The potential energy of a dipole in an electric field is given by: \[ U = - \mathbf{p} \cdot \mathbf{E} = - pE \cos \theta \] Initially, the dipole is aligned with the field (\(\theta = 0^\circ\)), so the initial energy is: \[ U_i = - pE \] When the dipole is flipped opposite to the field (\(\theta = 180^\circ\)), the final energy is: \[ U_f = pE \] The work required to rotate the dipole is: \[ W = U_f - U_i = pE - (-pE) = 2pE \] Substituting values: \[ W = 2 \times (6 \times 10^{-6}) \times (10^6) \] \[ W = 12 \times 10^{-3} = 6 \times 10^{-3} \, \text{J} \]
Given:
\[ \Delta^{\Theta}_{sub}[\text{C(graphite)}] = 710 \, kJ \, mol^{-1} \] \[ \Delta_{\text{C-H}}^{\Theta} = 414 \, kJ \, mol^{-1} \] \[ \Delta_{\text{H-H}}^{\Theta} = 436 \, kJ \, mol^{-1} \] \[ \Delta_{\text{C=C}}^{\Theta} = 611 \, kJ \, mol^{-1} \]
The \(\Delta H_f^{\Theta}\) for \(CH_2 = CH_2\) is _______ \(kJ \, mol^{-1}\) (nearest integer value).