The potential energy of a dipole in an electric field is given by: \[ U = - \mathbf{p} \cdot \mathbf{E} = - pE \cos \theta \] Initially, the dipole is aligned with the field (\(\theta = 0^\circ\)), so the initial energy is: \[ U_i = - pE \] When the dipole is flipped opposite to the field (\(\theta = 180^\circ\)), the final energy is: \[ U_f = pE \] The work required to rotate the dipole is: \[ W = U_f - U_i = pE - (-pE) = 2pE \] Substituting values: \[ W = 2 \times (6 \times 10^{-6}) \times (10^6) \] \[ W = 12 \times 10^{-3} = 6 \times 10^{-3} \, \text{J} \]
Charges are uniformly spread on the surface of a conducting sphere. The electric field from the center of the sphere in a point outside the sphere varies with distance \( r \) from the center as
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below:
Consider the following statements:
A. Surface tension arises due to extra energy of the molecules at the interior as compared to the molecules at the surface of a liquid.
B. As the temperature of liquid rises, the coefficient of viscosity increases.
C. As the temperature of gas increases, the coefficient of viscosity increases.
D. The onset of turbulence is determined by Reynolds number.
E. In a steady flow, two streamlines never intersect.
Choose the correct answer from the options given below: