Applying Snell’s Law:
- The angle of refraction at the second face of the prism is the critical angle \( C \), so:
\[
\sin C = \frac{n_{\text{medium}}}{n_{\text{prism}}}
\]
- For an equilateral prism, the angle of incidence inside the prism is:
\[
r = \frac{A}{2} = \frac{60^\circ}{2} = 30^\circ
\]
- The critical angle \( C \) is given by:
\[
\sin C = \frac{1}{n}
\]
Since \( C = 60^\circ \):
\[
\sin 60^\circ = \frac{n_{\text{medium}}}{n_{\text{prism}}}
\]
\[
\frac{\sqrt{3}}{2} = \frac{n_{\text{medium}}}{n_{\text{prism}}}
\]
\[
n_{\text{medium}} = \frac{\sqrt{3}}{2} n_{\text{prism}}
\]
Thus, the refractive index of the medium is \( \frac{\sqrt{3}}{2} n_{\text{prism}} \).