\(K_p\) \(>\) \(K_e\)
\(K_p\) \(<\) \(K_e\)
The de Broglie wavelength for a particle is given by:
\[\lambda = \frac{h}{p},\]
where \(h\) is Planck's constant and \(p\) is the momentum.
For the proton and electron:
\[\lambda_{\text{proton}} = \lambda_{\text{electron}} \implies p_{\text{proton}} = p_{\text{electron}}.\]
The kinetic energy is related to momentum as:
\[K = \frac{p^2}{2m}.\]
Since \(p_{\text{proton}} = p_{\text{electron}}\):
\[K_{\text{proton}} = \frac{p^2}{2m_p}, \quad K_{\text{electron}} = \frac{p^2}{2m_e}.\]
Given \(m_p>m_e\), it follows that:
\[K_{\text{proton}}<K_{\text{electron}}.\]
Thus:
\[K_p<K_e.\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: