\(K_p\) \(>\) \(K_e\)
\(K_p\) \(<\) \(K_e\)
The de Broglie wavelength for a particle is given by:
\[\lambda = \frac{h}{p},\]
where \(h\) is Planck's constant and \(p\) is the momentum.
For the proton and electron:
\[\lambda_{\text{proton}} = \lambda_{\text{electron}} \implies p_{\text{proton}} = p_{\text{electron}}.\]
The kinetic energy is related to momentum as:
\[K = \frac{p^2}{2m}.\]
Since \(p_{\text{proton}} = p_{\text{electron}}\):
\[K_{\text{proton}} = \frac{p^2}{2m_p}, \quad K_{\text{electron}} = \frac{p^2}{2m_e}.\]
Given \(m_p>m_e\), it follows that:
\[K_{\text{proton}}<K_{\text{electron}}.\]
Thus:
\[K_p<K_e.\]
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: