\(K_p\) \(>\) \(K_e\)
\(K_p\) \(<\) \(K_e\)
The de Broglie wavelength for a particle is given by:
\[\lambda = \frac{h}{p},\]
where \(h\) is Planck's constant and \(p\) is the momentum.
For the proton and electron:
\[\lambda_{\text{proton}} = \lambda_{\text{electron}} \implies p_{\text{proton}} = p_{\text{electron}}.\]
The kinetic energy is related to momentum as:
\[K = \frac{p^2}{2m}.\]
Since \(p_{\text{proton}} = p_{\text{electron}}\):
\[K_{\text{proton}} = \frac{p^2}{2m_p}, \quad K_{\text{electron}} = \frac{p^2}{2m_e}.\]
Given \(m_p>m_e\), it follows that:
\[K_{\text{proton}}<K_{\text{electron}}.\]
Thus:
\[K_p<K_e.\]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: