The de Broglie wavelength \( \lambda \) of a particle is given by the formula:
\( \lambda = \frac{h}{mv} \)
where:
Substitute these values into the formula:
\( \lambda = \frac{6.626 \times 10^{-34}}{9.11 \times 10^{-31} \times 6 \times 10^6} \)
Calculate the denominator:
\( 9.11 \times 10^{-31} \times 6 \times 10^6 = 54.66 \times 10^{-25} = 5.466 \times 10^{-24} \)
Now calculate the de Broglie wavelength:
\( \lambda = \frac{6.626 \times 10^{-34}}{5.466 \times 10^{-24}} \approx 1.212 \times 10^{-10} \, \text{m} \)
Thus, the de Broglie wavelength of the electron is approximately \( 1.2 \times 10^{-10} \, \text{m} \), which corresponds to the first option given.
Step 1: Write de Broglie wavelength formula
\[ \lambda = \frac{h}{mv} \]
Step 2: Substitute values
\[ \lambda = \frac{6.626 \times 10^{-34}}{9.11 \times 10^{-31} \times 6 \times 10^6} = \frac{6.626 \times 10^{-34}}{5.466 \times 10^{-24}} \approx 1.21 \times 10^{-10} \, m \]
If \( \lambda \) and \( K \) are de Broglie wavelength and kinetic energy, respectively, of a particle with constant mass. The correct graphical representation for the particle will be: