Step 1: Understanding the Concept:
This problem requires the calculation of the de-Broglie wavelength of a macroscopic object. The de-Broglie hypothesis states that all matter has wave-like properties, and the wavelength (\(\lambda\)) is inversely proportional to the momentum (\(p\)) of the object.
Step 2: Key Formula or Approach:
The de-Broglie wavelength (\(\lambda\)) is given by the formula:
\[ \lambda = \frac{h}{p} = \frac{h}{mv} \]
where \(h\) is Planck's constant (\(6.626 \times 10^{-34} \, \text{J}\cdot\text{s}\)), \(m\) is the mass of the object, and \(v\) is its velocity.
Step 3: Detailed Explanation:
Given data:
Mass, \(m = 150 \, \text{g} = 0.150 \, \text{kg}\) (It's crucial to convert to SI units).
Velocity, \(v = 30.0 \, \text{m/s}\).
Planck's constant, \(h = 6.626 \times 10^{-34} \, \text{J}\cdot\text{s}\).
Calculation:
First, calculate the momentum \(p\):
\[ p = mv = (0.150 \, \text{kg}) \times (30.0 \, \text{m/s}) = 4.5 \, \text{kg}\cdot\text{m/s} \]
Now, calculate the de-Broglie wavelength:
\[ \lambda = \frac{h}{p} = \frac{6.626 \times 10^{-34} \, \text{J}\cdot\text{s}}{4.5 \, \text{kg}\cdot\text{m/s}} \]
\[ \lambda \approx 1.4724 \times 10^{-34} \, \text{m} \]
Rounding the result, we get \(1.47 \times 10^{-34} \, \text{m}\).
Step 4: Final Answer:
The de-Broglie wavelength of the ball is \(1.47 \times 10^{-34}\) m.
Match List-I with List-II
\[\begin{array}{|l|l|} \hline \text{List-I (Soil component)} & \text{List-II (Definition)} \\ \hline (A)~\text{Azonal soils} & (I)~\text{An individual natural aggregate of soil particles.} \\ (B)~\text{Regoliths} & (II)~\text{Organisms living in the soil or ground} \\ (C)~\text{Ped} & (III)~\text{Soils have uniformity from the top-surface to the base, and do not have well-developed soil horizons.} \\ (D)~\text{Edaphons} & (IV)~\text{Zone of loose and unconsolidated weathered rock materials.} \\ \hline \end{array}\]
Choose the correct answer from the options given below:
Match List-I with List-II
\[\begin{array}{|l|l|} \hline \text{List I Content of humus} & \text{List II Percentage of contents} \\ \hline \text{(A) Carbon} & \text{(I) 35-40\%} \\ \hline \text{(B) Oxygen} & \text{(II) ~5\%} \\ \hline \text{(C) Hydrogen} & \text{(III) 55-60\%} \\ \hline \text{(D) Nitrogen} & \text{(IV) 15\%} \\ \hline \end{array}\]
Choose the correct answer from the options given below: