

Since the track is frictionless, we can use the principle of conservation of mechanical energy. At point A, the particle has potential energy and no kinetic energy, while at point B, it will have both kinetic and potential energy.
Calculate Potential Energy Difference Between Points A and B:
\( U_A + KE_A = U_B + KE_B \)
At point A, \( KE_A = 0 \) and \( U_A = mgh = mg \times 1 \). At point B, \( KE_B = \frac{1}{2}mv^2 \) and \( U_B = mg \times 0.5 \).
Setting up the equation:
\( mg \times 1 = \frac{1}{2}mv^2 + mg \times 0.5 \)
Simplify and solve for v:
\[ mg = \frac{1}{2}mv^2 + \frac{mg}{2} \]
\[ \frac{mg}{2} = \frac{1}{2}mv^2 \]
\[ v = \sqrt{g} = \sqrt{10} \, \text{m/s} \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
Sea water, which can be considered as a 6 molar (6 M) solution of NaCl, has a density of 2 g mL$^{-1}$. The concentration of dissolved oxygen (O$_2$) in sea water is 5.8 ppm. Then the concentration of dissolved oxygen (O$_2$) in sea water, in x $\times$ 10$^{-4}$ m. x = _______. (Nearest integer)
Given: Molar mass of NaCl is 58.5 g mol$^{-1}$Molar mass of O$_2$ is 32 g mol$^{-1}$.