A particle is performing S.H.M whose distance from mean position varies as \(x = Asin(wt)\). Find the position of the particle from the mean position, where kinetic energy and potential energy is equal.
Using a variable frequency ac voltage source the maximum current measured in the given LCR circuit is 50 mA for V = 5 sin (100t) The values of L and R are shown in the figure. The capacitance of the capacitor (C) used is_______ µF.

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Which of the following best represents the temperature versus heat supplied graph for water, in the range of \(-20^\circ\text{C}\) to \(120^\circ\text{C}\)? 
We can note there involves a continuous interchange of potential and kinetic energy in a simple harmonic motion. The system that performs simple harmonic motion is called the harmonic oscillator.
Case 1: When the potential energy is zero, and the kinetic energy is a maximum at the equilibrium point where maximum displacement takes place.
Case 2: When the potential energy is maximum, and the kinetic energy is zero, at a maximum displacement point from the equilibrium point.
Case 3: The motion of the oscillating body has different values of potential and kinetic energy at other points.