The correct option is(A): increased by 50%
\(U=\frac{1}{2}=(kC_0)V^2\)
\(⇒\frac{U}{U}=1.5\)
⇒ Energy increases by 50%
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
The velocity (v) - time (t) plot of the motion of a body is shown below :
The acceleration (a) - time(t) graph that best suits this motion is :
A wheel of a bullock cart is rolling on a level road, as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel, respectively) ?
A wire of 60 cm length and mass 10 g is suspended by a pair of flexible leads in a magnetic field of 0.60 T as shown in the figure. The magnitude of the current required to remove the tension in the supporting leads is:
Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2\sqrt{17}$ from the foot of perpendicular drawn from the point $(1, 2, 3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{OA} \cdot \overrightarrow{OB}$ is equal to:
Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $f(0) = 1$ and $f(2x) - f(x) = x$ for all $x \in \mathbb{R}$. If $\lim_{n \to \infty} \left\{ f(x) - f\left( \frac{x}{2^n} \right) \right\} = G(x)$, then $\sum_{r=1}^{10} G(r^2)$ is equal to
In the expansion of $\left( \sqrt{5} + \frac{1}{\sqrt{5}} \right)^n$, $n \in \mathbb{N}$, if the ratio of $15^{th}$ term from the beginning to the $15^{th}$ term from the end is $\frac{1}{6}$, then the value of $^nC_3$ is:
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
Consider two vectors $\vec{u} = 3\hat{i} - \hat{j}$ and $\vec{v} = 2\hat{i} + \hat{j} - \lambda \hat{k}$, $\lambda>0$. The angle between them is given by $\cos^{-1} \left( \frac{\sqrt{5}}{2\sqrt{7}} \right)$. Let $\vec{v} = \vec{v}_1 + \vec{v}_2$, where $\vec{v}_1$ is parallel to $\vec{u}$ and $\vec{v}_2$ is perpendicular to $\vec{u}$. Then the value $|\vec{v}_1|^2 + |\vec{v}_2|^2$ is equal to
The velocity with which one object moves with respect to another object is the relative velocity of an object with respect to another. By relative velocity, we can further understand the time rate of change in the relative position of one object with respect to another.
It is generally used to describe the motion of moving boats through water, airplanes in the wind, etc. According to the person as an observer inside the object, we can compute the velocity very easily.
The velocity of the body A – the velocity of the body B = The relative velocity of A with respect to B
V_{AB} = V_{A} – V_{B}
Where,
The relative velocity of the body A with respect to the body B = V_{AB}
The velocity of the body A = V_{A}
The velocity of body B = V_{B}