1. Calculate Total Mass of Reactants (\(m_r\)):
\[ m_r = 235.0439 \, \text{u}. \]
2. Calculate Total Mass of Products (\(m_p\)):
\[ m_p = 139.9054 + 93.9063 + 1.0086 = 234.8203 \, \text{u}. \]
3. Calculate Disintegration Energy (\(Q\)):
The disintegration energy \(Q\) is given by:
\[ Q = (m_r - m_p)c^2. \]
Substitute the values:
\[ Q = (235.0439 - 234.8203) \times 931. \]
Simplify:
\[ Q = 0.2236 \times 931 = 208.1716 \, \text{MeV}. \]
Answer: \(208 \, \text{MeV}\)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: