1. Calculate Total Mass of Reactants (\(m_r\)):
\[ m_r = 235.0439 \, \text{u}. \]
2. Calculate Total Mass of Products (\(m_p\)):
\[ m_p = 139.9054 + 93.9063 + 1.0086 = 234.8203 \, \text{u}. \]
3. Calculate Disintegration Energy (\(Q\)):
The disintegration energy \(Q\) is given by:
\[ Q = (m_r - m_p)c^2. \]
Substitute the values:
\[ Q = (235.0439 - 234.8203) \times 931. \]
Simplify:
\[ Q = 0.2236 \times 931 = 208.1716 \, \text{MeV}. \]
Answer: \(208 \, \text{MeV}\)
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = 4/3 \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \frac{n_2}{2n_1} \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is cm.
Two vessels A and B are connected via stopcock. Vessel A is filled with a gas at a certain pressure. The entire assembly is immersed in water and allowed to come to thermal equilibrium with water. After opening the stopcock the gas from vessel A expands into vessel B and no change in temperature is observed in the thermometer. Which of the following statement is true?
Choose the correct nuclear process from the below options:
\( [ p : \text{proton}, n : \text{neutron}, e^- : \text{electron}, e^+ : \text{positron}, \nu : \text{neutrino}, \bar{\nu} : \text{antineutrino} ] \)
Let \( T_r \) be the \( r^{\text{th}} \) term of an A.P. If for some \( m \), \( T_m = \dfrac{1}{25} \), \( T_{25} = \dfrac{1}{20} \), and \( \displaystyle\sum_{r=1}^{25} T_r = 13 \), then \( 5m \displaystyle\sum_{r=m}^{2m} T_r \) is equal to: