1. Calculate Total Mass of Reactants (\(m_r\)):
\[ m_r = 235.0439 \, \text{u}. \]
2. Calculate Total Mass of Products (\(m_p\)):
\[ m_p = 139.9054 + 93.9063 + 1.0086 = 234.8203 \, \text{u}. \]
3. Calculate Disintegration Energy (\(Q\)):
The disintegration energy \(Q\) is given by:
\[ Q = (m_r - m_p)c^2. \]
Substitute the values:
\[ Q = (235.0439 - 234.8203) \times 931. \]
Simplify:
\[ Q = 0.2236 \times 931 = 208.1716 \, \text{MeV}. \]
Answer: \(208 \, \text{MeV}\)
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = 4/3 \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \frac{n_2}{2n_1} \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is cm. 
Two light beams fall on a transparent material block at point 1 and 2 with angle \( \theta_1 \) and \( \theta_2 \), respectively, as shown in the figure. After refraction, the beams intersect at point 3 which is exactly on the interface at the other end of the block. Given: the distance between 1 and 2, \( d = 4/3 \) cm and \( \theta_1 = \theta_2 = \cos^{-1} \frac{n_2}{2n_1} \), where \( n_2 \) is the refractive index of the block and \( n_1 \) is the refractive index of the outside medium, then the thickness of the block is cm. 
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]