For a hollow sphere rolling on a plane surface, the total kinetic energy \( K_{\text{total}} \) consists of translational kinetic energy \( K_{\text{trans}} \) and rotational kinetic energy \( K_{\text{rot}} \).
Step 1: Expressions for Kinetic Energy
The translational kinetic energy is given by:
\[ K_{\text{trans}} = \frac{1}{2} mv^2, \]
where \( m \) is the mass and \( v \) is the linear velocity of the center of mass.
The rotational kinetic energy about the axis of symmetry is given by:
\[ K_{\text{rot}} = \frac{1}{2} I \omega^2, \]
where \( I \) is the moment of inertia and \( \omega \) is the angular velocity.
For a hollow sphere:
\[ I = \frac{2}{3} m R^2, \]
where \( R \) is the radius of the sphere.
Step 2: Relating Translational and Rotational Motion
Since the sphere rolls without slipping:
\[ v = R \omega. \]
Step 3: Substituting the Moment of Inertia
The rotational kinetic energy becomes:
\[ K_{\text{rot}} = \frac{1}{2} \left( \frac{2}{3} m R^2 \right) \omega^2 = \frac{1}{3} m R^2 \omega^2. \]
Using \( v = R \omega \):
\[ K_{\text{rot}} = \frac{1}{3} m v^2. \]
Step 4: Calculating the Total Kinetic Energy
The total kinetic energy is:
\[ K_{\text{total}} = K_{\text{trans}} + K_{\text{rot}} = \frac{1}{2} m v^2 + \frac{1}{3} m v^2. \]
Combining terms:
\[ K_{\text{total}} = \frac{5}{6} m v^2. \]
Step 5: Finding the Ratio of Kinetic Energies
The ratio of rotational kinetic energy to total kinetic energy is:
\[ \text{Ratio} = \frac{K_{\text{rot}}}{K_{\text{total}}} = \frac{\frac{1}{3} m v^2}{\frac{5}{6} m v^2} = \frac{2}{5}. \]
Thus:
\[ \frac{x}{5} = \frac{2}{5} \implies x = 2. \]
Therefore, the value of \( x \) is 2.
The strain-stress plot for materials A, B, C and D is shown in the figure. Which material has the largest Young's modulus? 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
