For a hollow sphere rolling on a plane surface, the total kinetic energy \( K_{\text{total}} \) consists of translational kinetic energy \( K_{\text{trans}} \) and rotational kinetic energy \( K_{\text{rot}} \).
Step 1: Expressions for Kinetic Energy
The translational kinetic energy is given by:
\[ K_{\text{trans}} = \frac{1}{2} mv^2, \]
where \( m \) is the mass and \( v \) is the linear velocity of the center of mass.
The rotational kinetic energy about the axis of symmetry is given by:
\[ K_{\text{rot}} = \frac{1}{2} I \omega^2, \]
where \( I \) is the moment of inertia and \( \omega \) is the angular velocity.
For a hollow sphere:
\[ I = \frac{2}{3} m R^2, \]
where \( R \) is the radius of the sphere.
Step 2: Relating Translational and Rotational Motion
Since the sphere rolls without slipping:
\[ v = R \omega. \]
Step 3: Substituting the Moment of Inertia
The rotational kinetic energy becomes:
\[ K_{\text{rot}} = \frac{1}{2} \left( \frac{2}{3} m R^2 \right) \omega^2 = \frac{1}{3} m R^2 \omega^2. \]
Using \( v = R \omega \):
\[ K_{\text{rot}} = \frac{1}{3} m v^2. \]
Step 4: Calculating the Total Kinetic Energy
The total kinetic energy is:
\[ K_{\text{total}} = K_{\text{trans}} + K_{\text{rot}} = \frac{1}{2} m v^2 + \frac{1}{3} m v^2. \]
Combining terms:
\[ K_{\text{total}} = \frac{5}{6} m v^2. \]
Step 5: Finding the Ratio of Kinetic Energies
The ratio of rotational kinetic energy to total kinetic energy is:
\[ \text{Ratio} = \frac{K_{\text{rot}}}{K_{\text{total}}} = \frac{\frac{1}{3} m v^2}{\frac{5}{6} m v^2} = \frac{2}{5}. \]
Thus:
\[ \frac{x}{5} = \frac{2}{5} \implies x = 2. \]
Therefore, the value of \( x \) is 2.
A slanted object AB is placed on one side of convex lens as shown in the diagram. The image is formed on the opposite side. Angle made by the image with principal axis is: 
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by: