To ensure visibility, the critical condition involves calculating the maximum angle of refraction, \(\theta_r\), formed when light exits the liquid at the surface.
According to Snell's Law: \[ \mu \sin(\theta_i) = 1 \cdot \sin(90^\circ) = \mu \cdot \sin(\theta_i) \] Simplifying: \[ \sin(\theta_i) = \frac{1}{\mu} \]
The maximum angle for visibility is when light gets refracted horizontally, reaching the extreme of \(90^\circ\), thus the angle of incidence should not exceed the critical angle: \[ \sin(\theta_i) = \frac{1}{\mu} \Rightarrow \theta_i = \sin^{-1}\left(\frac{1}{\mu}\right) \]
The light path from \(O\) to \(E\) forms a right triangle where the hypotenuse equals the vessel's radius and the vertical leg aligns with the hemisphere. In this scenario, geometry dictates: \[ \sin(\theta_i) = \frac{R}{R\sqrt{2}} = \frac{1}{\sqrt{2}} \]
Equating the two relationships of \(\sin(\theta_i)\): \[ \frac{1}{\mu} = \frac{1}{\sqrt{2}} \]
Solve for \(\mu\): \[ \mu = \sqrt{2} \]
Thus, the minimum refractive index of the liquid for the coin to be visible from \(E\) is \(\sqrt{2}\)
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: