
To ensure visibility, the critical condition involves calculating the maximum angle of refraction, \(\theta_r\), formed when light exits the liquid at the surface.
According to Snell's Law: \[ \mu \sin(\theta_i) = 1 \cdot \sin(90^\circ) = \mu \cdot \sin(\theta_i) \] Simplifying: \[ \sin(\theta_i) = \frac{1}{\mu} \]
The maximum angle for visibility is when light gets refracted horizontally, reaching the extreme of \(90^\circ\), thus the angle of incidence should not exceed the critical angle: \[ \sin(\theta_i) = \frac{1}{\mu} \Rightarrow \theta_i = \sin^{-1}\left(\frac{1}{\mu}\right) \]
The light path from \(O\) to \(E\) forms a right triangle where the hypotenuse equals the vessel's radius and the vertical leg aligns with the hemisphere. In this scenario, geometry dictates: \[ \sin(\theta_i) = \frac{R}{R\sqrt{2}} = \frac{1}{\sqrt{2}} \]
Equating the two relationships of \(\sin(\theta_i)\): \[ \frac{1}{\mu} = \frac{1}{\sqrt{2}} \]
Solve for \(\mu\): \[ \mu = \sqrt{2} \]
Thus, the minimum refractive index of the liquid for the coin to be visible from \(E\) is \(\sqrt{2}\)
A transparent block A having refractive index $ \mu_2 = 1.25 $ is surrounded by another medium of refractive index $ \mu_1 = 1.0 $ as shown in figure. A light ray is incident on the flat face of the block with incident angle $ \theta $ as shown in figure. What is the maximum value of $ \theta $ for which light suffers total internal reflection at the top surface of the block ?
For a given reaction \( R \rightarrow P \), \( t_{1/2} \) is related to \([A_0]\) as given in the table. Given: \( \log 2 = 0.30 \). Which of the following is true?
| \([A]\) (mol/L) | \(t_{1/2}\) (min) |
|---|---|
| 0.100 | 200 |
| 0.025 | 100 |
A. The order of the reaction is \( \frac{1}{2} \).
B. If \( [A_0] \) is 1 M, then \( t_{1/2} \) is \( 200/\sqrt{10} \) min.
C. The order of the reaction changes to 1 if the concentration of reactant changes from 0.100 M to 0.500 M.
D. \( t_{1/2} \) is 800 min for \( [A_0] = 1.6 \) M.