
To ensure visibility, the critical condition involves calculating the maximum angle of refraction, \(\theta_r\), formed when light exits the liquid at the surface.
According to Snell's Law: \[ \mu \sin(\theta_i) = 1 \cdot \sin(90^\circ) = \mu \cdot \sin(\theta_i) \] Simplifying: \[ \sin(\theta_i) = \frac{1}{\mu} \]
The maximum angle for visibility is when light gets refracted horizontally, reaching the extreme of \(90^\circ\), thus the angle of incidence should not exceed the critical angle: \[ \sin(\theta_i) = \frac{1}{\mu} \Rightarrow \theta_i = \sin^{-1}\left(\frac{1}{\mu}\right) \]
The light path from \(O\) to \(E\) forms a right triangle where the hypotenuse equals the vessel's radius and the vertical leg aligns with the hemisphere. In this scenario, geometry dictates: \[ \sin(\theta_i) = \frac{R}{R\sqrt{2}} = \frac{1}{\sqrt{2}} \]
Equating the two relationships of \(\sin(\theta_i)\): \[ \frac{1}{\mu} = \frac{1}{\sqrt{2}} \]
Solve for \(\mu\): \[ \mu = \sqrt{2} \]
Thus, the minimum refractive index of the liquid for the coin to be visible from \(E\) is \(\sqrt{2}\)
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
