To ensure visibility, the critical condition involves calculating the maximum angle of refraction, \(\theta_r\), formed when light exits the liquid at the surface.
According to Snell's Law: \[ \mu \sin(\theta_i) = 1 \cdot \sin(90^\circ) = \mu \cdot \sin(\theta_i) \] Simplifying: \[ \sin(\theta_i) = \frac{1}{\mu} \]
The maximum angle for visibility is when light gets refracted horizontally, reaching the extreme of \(90^\circ\), thus the angle of incidence should not exceed the critical angle: \[ \sin(\theta_i) = \frac{1}{\mu} \Rightarrow \theta_i = \sin^{-1}\left(\frac{1}{\mu}\right) \]
The light path from \(O\) to \(E\) forms a right triangle where the hypotenuse equals the vessel's radius and the vertical leg aligns with the hemisphere. In this scenario, geometry dictates: \[ \sin(\theta_i) = \frac{R}{R\sqrt{2}} = \frac{1}{\sqrt{2}} \]
Equating the two relationships of \(\sin(\theta_i)\): \[ \frac{1}{\mu} = \frac{1}{\sqrt{2}} \]
Solve for \(\mu\): \[ \mu = \sqrt{2} \]
Thus, the minimum refractive index of the liquid for the coin to be visible from \(E\) is \(\sqrt{2}\)
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is: