Step 1: Understanding the adiabatic process.
In an adiabatic process, there is no heat exchange between the system and its surroundings, i.e., \( \Delta Q = 0 \). According to the first law of thermodynamics: \[ \Delta Q = \Delta U + W \] Where \( \Delta U \) is the change in internal energy, and \( W \) is the work done by the system. Since there is no heat exchange in an adiabatic process, we have: \[ 0 = \Delta U + W \quad \Rightarrow \quad \Delta U = -W \] This means that the change in the internal energy is equal to the negative of the work done by the system.
Step 2: Conclusion.
Thus, the internal energy of the gas changes during adiabatic compression. Therefore, the statement "There is no change in the internal energy" is incorrect.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
