Given:
- The current \( i = 5 \, \text{A} \). - The side length of the square loop is \( d = \frac{1}{2\sqrt{2}} \, \text{m} \).
The magnetic field \( B \) due to a single side of the square loop is given by the formula: \[ B = \frac{\mu_0 i}{4 \pi d} \left( \sin \theta_1 + \sin \theta_2 \right), \] where: - \( \mu_0 \) is the permeability of free space, - \( i \) is the current, - \( d \) is the distance between the point and the wire, - \( \theta_1 \) and \( \theta_2 \) are the angles made by the magnetic field lines with respect to the wire.
Substituting the given values, we get: \[ B = \frac{10^{-7} \times 5 \times 2}{\frac{1}{2\sqrt{2}}} = 2 \times 10^{-6} \, \text{T}. \]
Since there are 4 sides to the square loop, and the magnetic field due to each side contributes equally at the center of the loop, the net magnetic field at the center is: \[ B_{\text{net}} = 4B = 4 \times 2 \times 10^{-6} = 8 \times 10^{-6} \, \text{T}. \]
The net magnetic field at the center of the square loop is \( \boxed{8 \times 10^{-6} \, \text{T}} \).
From the given data, we conclude that \( P = 8 \).
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:

An infinite wire has a circular bend of radius \( a \), and carrying a current \( I \) as shown in the figure. The magnitude of the magnetic field at the origin \( O \) of the arc is given by:
Given below are two statements:
Statement (I):
are isomeric compounds.
Statement (II):
are functional group isomers.
In the light of the above statements, choose the correct answer from the options given below:
Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with
\(K_4\)[Fe(CN)\(_6\)] is : \[ {Cu}^{2+}, \, {Fe}^{3+}, \, {Ba}^{2+}, \, {Ca}^{2+}, \, {NH}_4^+, \, {Mg}^{2+}, \, {Zn}^{2+} \]