Given the setup, we have:
\( \mu_l = 1.3 \), \( R_1 = 30 \, \text{cm} \), and \( R_2 = 20 \, \text{cm} \), \( \mu_l = 1.5 \)
The focal length \( f \) is given by the formula:
\( \frac{1}{f} = \left( \frac{1.3 - 1}{1} \right) \left( \frac{1}{\infty} - \frac{1}{-30} \right) \)
Simplifying, we get:
\( = \left( 1.5 - 1 \right) \left( \frac{1}{-30} - \frac{1}{-30} \right) \)
\( = \frac{0.3}{30} + \frac{0.5}{60} + \frac{1}{120} \)
\( = \frac{6 + 5}{600} = \frac{11}{600} \)
Thus, the focal length is:
\( f = \frac{600}{11} \, \text{cm} \)
