Solution:
The frequency of oscillation of a compass needle in a magnetic field is given by: $$ f = \frac{1}{2\pi} \sqrt{\frac{MB_H}{I}} $$ where:
$f$ is the frequency of oscillation
$M$ is the magnetic moment of the needle
$B_H$ is the horizontal component of the Earth's magnetic field
$I$ is the moment of inertia of the needle
Since $M$ and $I$ are constant, we have:
$$ f \propto \sqrt{B_H} $$ $$ f^2 \propto B_H $$ Also, $B_H = B \cos \delta$, where $B$ is the total magnetic field and $\delta$ is the dip angle. So, $f^2 \propto B \cos \delta$. Let $f_1 = 20$ oscillations/minute and $\delta_1 = 30^\circ$.
Let $f_2 = 30$ oscillations/minute and $\delta_2 = 60^\circ$. Then, $$ f_1^2 \propto B_1 \cos \delta_1 $$ $$ f_2^2 \propto B_2 \cos \delta_2 $$ Therefore, $$ \frac{f_1^2}{f_2^2} = \frac{B_1 \cos \delta_1}{B_2 \cos \delta_2} $$ Substituting the given values: $$ \frac{20^2}{30^2} = \frac{B_1 \cos 30^\circ}{B_2 \cos 60^\circ} $$ $$ \frac{400}{900} = \frac{B_1 (\sqrt{3}/2)}{B_2 (1/2)} $$ $$ \frac{4}{9} = \frac{B_1}{B_2} \sqrt{3} $$ $$ \frac{B_1}{B_2} = \frac{4}{9\sqrt{3}} $$ We are given that $\frac{B_1}{B_2} = \frac{4}{\sqrt{x}}$. Therefore, $$ \frac{4}{\sqrt{x}} = \frac{4}{9\sqrt{3}} $$ $$ \sqrt{x} = 9\sqrt{3} $$ $$ x = (9\sqrt{3})^2 = 81 \cdot 3 = 243 $$ Thus, $x = 243$.
Using a variable frequency ac voltage source the maximum current measured in the given LCR circuit is 50 mA for V = 5 sin (100t) The values of L and R are shown in the figure. The capacitance of the capacitor (C) used is_______ µF.

In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.