The direction of propagation of light is perpendicular to the wave front and is symmetric about the \( x \), \( y \), and \( z \) axes.
The angle made by the direction of wave propagation with the \( x \)-axis is the same as that with the \( y \)-axis and the \( z \)-axis.
Thus, the equation can be written as: \[ \cos \theta = \cos \beta = \cos \gamma \quad (\text{where } \alpha, \beta, \gamma \text{ are the angles made by light with the } x, y, z \text{ axes respectively}) \] Also, we know that \( \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1 \). Since the angles are equal, we have: \[ \cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1 \quad \Rightarrow \quad 3 \cos^2 \alpha = 1 \quad \Rightarrow \quad \cos \alpha = \frac{1}{\sqrt{3}} \] Thus, the angle is \( \cos^{-1} \left( \frac{1}{\sqrt{3}} \right) \).
A molecule with the formula $ \text{A} \text{X}_2 \text{Y}_2 $ has all it's elements from p-block. Element A is rarest, monotomic, non-radioactive from its group and has the lowest ionization energy value among X and Y. Elements X and Y have first and second highest electronegativity values respectively among all the known elements. The shape of the molecule is:
A transition metal (M) among Mn, Cr, Co, and Fe has the highest standard electrode potential $ M^{n}/M^{n+1} $. It forms a metal complex of the type $[M \text{CN}]^{n+}$. The number of electrons present in the $ e $-orbital of the complex is ... ...
Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$
0.1 mol of the following given antiviral compound (P) will weigh .........x $ 10^{-1} $ g.
Consider the following equilibrium, $$ \text{CO(g)} + \text{H}_2\text{(g)} \rightleftharpoons \text{CH}_3\text{OH(g)} $$ 0.1 mol of CO along with a catalyst is present in a 2 dm$^3$ flask maintained at 500 K. Hydrogen is introduced into the flask until the pressure is 5 bar and 0.04 mol of CH$_3$OH is formed. The $ K_p $ is ...... x $ 10^7 $ (nearest integer).
Given: $ R = 0.08 \, \text{dm}^3 \, \text{bar} \, \text{K}^{-1} \, \text{mol}^{-1} $
Assume only methanol is formed as the product and the system follows ideal gas behavior.