Since there is no external torque, angular momentum is conserved:
\[ I_1 \omega_1 = I_2 \omega_2. \]
Substitute \( I_1 = I_0 \), \( \omega_1 = \omega \), and \( I_2 = 3I_0 \):
\[ I_0 \omega = 3I_0 \omega_2. \]
Cancel \( I_0 \):
\[ \omega_2 = \frac{\omega}{3}. \]
The initial kinetic energy \( E \) is given by:
\[ E = \frac{1}{2} I_1 \omega_1^2. \]
Substitute \( I_1 = I_0 \) and \( \omega_1 = \omega \):
\[ E = \frac{1}{2} I_0 \omega^2. \]
The final kinetic energy \( E_f \) is given by:
\[ E_f = \frac{1}{2} I_2 \omega_2^2. \]
Substitute \( I_2 = 3I_0 \) and \( \omega_2 = \frac{\omega}{3} \):
\[ E_f = \frac{1}{2} (3I_0) \left(\frac{\omega}{3}\right)^2. \]
Simplify:
\[ E_f = \frac{1}{2} \cdot 3I_0 \cdot \frac{\omega^2}{9}. \]
\[ E_f = \frac{1}{6} I_0 \omega^2. \]
Compare \( E_f \) to the initial energy \( E = \frac{1}{2} I_0 \omega^2 \):
\[ E_f = \frac{1}{3} E. \]
The final kinetic energy is given as \( \frac{E}{x} \). Comparing this with \( E_f = \frac{E}{3} \), we find:
\[ x = 3. \]
The value of \( x \) is 3.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: