For slipping, acceleration $a_s = g \sin \theta$. For rolling, acceleration $a_r = \frac{g \sin \theta}{1 + k^2/r^2}$, where $k = r/\sqrt{2}$ (for a disc):
\[ a_r = \frac{g \sin \theta}{1 + 0.5} = \frac{2g \sin \theta}{3}. \]
Time ratio:
\[ \frac{t_r}{t_s} = \sqrt{\frac{a_s}{a_r}} = \sqrt{\frac{g \sin \theta}{\frac{2g \sin \theta}{3}}} = \sqrt{\frac{3}{2}}. \]
Given $t_r = \sqrt{\frac{\alpha}{2}} t_s$, equating:
\[ \sqrt{\frac{\alpha}{2}} = \sqrt{\frac{3}{2}}, \quad \alpha = 3. \]
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: