A circuit with an electrical load having impedance $ Z $ is connected with an AC source as shown in the diagram. The source voltage varies in time as $ V(t) = 300 \sin(400t) \, \text{V} $, where $ t $ is time in seconds.
List-I shows various options for the load. The possible currents $ i(t) $ in the circuit as a function of time are given in List-II.
Choose the option that describes the correct match between the entries in List-I to those in List-II.
Step 1: Analyze option P (pure resistor)
Impedance is real and there is no phase difference. The current will be in phase with voltage, hence same shape as voltage (sine wave). Matches with graph (3).
\[ \Rightarrow \text{P} \rightarrow 3 \]
Step 2: Analyze option Q (R-L circuit)
In an R-L circuit, current lags voltage. From the graphs, graph (5) shows a lag.
\[ \Rightarrow \text{Q} \rightarrow 5 \]
Step 3: Analyze option R (R-L-C circuit)
Resonance occurs when \( \omega L = \frac{1}{\omega C} \). Given:
Check resonance condition:
\[ \omega^2 = \frac{1}{LC} = \frac{1}{25 \times 10^{-3} \cdot 50 \times 10^{-6}} = \frac{1}{1.25 \times 10^{-6}} = 8 \times 10^5 \]
\[ \omega = \sqrt{8 \times 10^5} \approx 894 \]
Since \( \omega = 400 < \omega_0 \), the circuit is inductive → current lags slightly. Graph (2) matches this behavior.
\[ \Rightarrow \text{R} \rightarrow 2 \]
Step 4: Analyze option S (R-L-C circuit)
Check for resonance:
\[ \omega^2 = \frac{1}{LC} = \frac{1}{125 \times 10^{-3} \cdot 50 \times 10^{-6}} = \frac{1}{6.25 \times 10^{-6}} = 1.6 \times 10^5 \]
\[ \omega = \sqrt{1.6 \times 10^5} \approx 400 \]
Hence, circuit is at resonance → current is maximum and in phase with voltage. Graph (1) shows maximum amplitude and sharp waveform.
\[ \Rightarrow \text{S} \rightarrow 1 \]
For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is: