A circuit with an electrical load having impedance $ Z $ is connected with an AC source as shown in the diagram. The source voltage varies in time as $ V(t) = 300 \sin(400t) \, \text{V} $, where $ t $ is time in seconds. 
List-I shows various options for the load. The possible currents $ i(t) $ in the circuit as a function of time are given in List-II.
Choose the option that describes the correct match between the entries in List-I to those in List-II.
Step 1: Analyze option P (pure resistor)
Impedance is real and there is no phase difference. The current will be in phase with voltage, hence same shape as voltage (sine wave). Matches with graph (3).
\[ \Rightarrow \text{P} \rightarrow 3 \]
Step 2: Analyze option Q (R-L circuit)
In an R-L circuit, current lags voltage. From the graphs, graph (5) shows a lag.
\[ \Rightarrow \text{Q} \rightarrow 5 \]
Step 3: Analyze option R (R-L-C circuit)
Resonance occurs when \( \omega L = \frac{1}{\omega C} \). Given:
Check resonance condition:
\[ \omega^2 = \frac{1}{LC} = \frac{1}{25 \times 10^{-3} \cdot 50 \times 10^{-6}} = \frac{1}{1.25 \times 10^{-6}} = 8 \times 10^5 \]
\[ \omega = \sqrt{8 \times 10^5} \approx 894 \]
Since \( \omega = 400 < \omega_0 \), the circuit is inductive → current lags slightly. Graph (2) matches this behavior.
\[ \Rightarrow \text{R} \rightarrow 2 \]
Step 4: Analyze option S (R-L-C circuit)
Check for resonance:
\[ \omega^2 = \frac{1}{LC} = \frac{1}{125 \times 10^{-3} \cdot 50 \times 10^{-6}} = \frac{1}{6.25 \times 10^{-6}} = 1.6 \times 10^5 \]
\[ \omega = \sqrt{1.6 \times 10^5} \approx 400 \]
Hence, circuit is at resonance → current is maximum and in phase with voltage. Graph (1) shows maximum amplitude and sharp waveform.
\[ \Rightarrow \text{S} \rightarrow 1 \]
An alternating current is represented by the equation, $\mathrm{i}=100 \sqrt{2} \sin (100 \pi \mathrm{t})$ ampere. The RMS value of current and the frequency of the given alternating current are
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is