A circuit with an electrical load having impedance $ Z $ is connected with an AC source as shown in the diagram. The source voltage varies in time as $ V(t) = 300 \sin(400t) \, \text{V} $, where $ t $ is time in seconds. 
List-I shows various options for the load. The possible currents $ i(t) $ in the circuit as a function of time are given in List-II.
Choose the option that describes the correct match between the entries in List-I to those in List-II.
Step 1: Analyze option P (pure resistor)
Impedance is real and there is no phase difference. The current will be in phase with voltage, hence same shape as voltage (sine wave). Matches with graph (3).
\[ \Rightarrow \text{P} \rightarrow 3 \]
Step 2: Analyze option Q (R-L circuit)
In an R-L circuit, current lags voltage. From the graphs, graph (5) shows a lag.
\[ \Rightarrow \text{Q} \rightarrow 5 \]
Step 3: Analyze option R (R-L-C circuit)
Resonance occurs when \( \omega L = \frac{1}{\omega C} \). Given:
Check resonance condition:
\[ \omega^2 = \frac{1}{LC} = \frac{1}{25 \times 10^{-3} \cdot 50 \times 10^{-6}} = \frac{1}{1.25 \times 10^{-6}} = 8 \times 10^5 \]
\[ \omega = \sqrt{8 \times 10^5} \approx 894 \]
Since \( \omega = 400 < \omega_0 \), the circuit is inductive → current lags slightly. Graph (2) matches this behavior.
\[ \Rightarrow \text{R} \rightarrow 2 \]
Step 4: Analyze option S (R-L-C circuit)
Check for resonance:
\[ \omega^2 = \frac{1}{LC} = \frac{1}{125 \times 10^{-3} \cdot 50 \times 10^{-6}} = \frac{1}{6.25 \times 10^{-6}} = 1.6 \times 10^5 \]
\[ \omega = \sqrt{1.6 \times 10^5} \approx 400 \]
Hence, circuit is at resonance → current is maximum and in phase with voltage. Graph (1) shows maximum amplitude and sharp waveform.
\[ \Rightarrow \text{S} \rightarrow 1 \]
An alternating current is represented by the equation, $\mathrm{i}=100 \sqrt{2} \sin (100 \pi \mathrm{t})$ ampere. The RMS value of current and the frequency of the given alternating current are
For the AC circuit shown in the figure, $ R = 100 \, \text{k}\Omega $ and $ C = 100 \, \text{pF} $, and the phase difference between $ V_{\text{in}} $ and $ (V_B - V_A) $ is 90°. The input signal frequency is $ 10^x $ rad/sec, where $ x $ is:
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.