A circuit with an electrical load having impedance $ Z $ is connected with an AC source as shown in the diagram. The source voltage varies in time as $ V(t) = 300 \sin(400t) \, \text{V} $, where $ t $ is time in seconds.
List-I shows various options for the load. The possible currents $ i(t) $ in the circuit as a function of time are given in List-II.
Choose the option that describes the correct match between the entries in List-I to those in List-II.
Step 1: Analyze option P (pure resistor)
Impedance is real and there is no phase difference. The current will be in phase with voltage, hence same shape as voltage (sine wave). Matches with graph (3).
\[ \Rightarrow \text{P} \rightarrow 3 \]
Step 2: Analyze option Q (R-L circuit)
In an R-L circuit, current lags voltage. From the graphs, graph (5) shows a lag.
\[ \Rightarrow \text{Q} \rightarrow 5 \]
Step 3: Analyze option R (R-L-C circuit)
Resonance occurs when \( \omega L = \frac{1}{\omega C} \). Given:
Check resonance condition:
\[ \omega^2 = \frac{1}{LC} = \frac{1}{25 \times 10^{-3} \cdot 50 \times 10^{-6}} = \frac{1}{1.25 \times 10^{-6}} = 8 \times 10^5 \]
\[ \omega = \sqrt{8 \times 10^5} \approx 894 \]
Since \( \omega = 400 < \omega_0 \), the circuit is inductive → current lags slightly. Graph (2) matches this behavior.
\[ \Rightarrow \text{R} \rightarrow 2 \]
Step 4: Analyze option S (R-L-C circuit)
Check for resonance:
\[ \omega^2 = \frac{1}{LC} = \frac{1}{125 \times 10^{-3} \cdot 50 \times 10^{-6}} = \frac{1}{6.25 \times 10^{-6}} = 1.6 \times 10^5 \]
\[ \omega = \sqrt{1.6 \times 10^5} \approx 400 \]
Hence, circuit is at resonance → current is maximum and in phase with voltage. Graph (1) shows maximum amplitude and sharp waveform.
\[ \Rightarrow \text{S} \rightarrow 1 \]
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is