An electric charge \(10^{-6} \, \mu C\) is placed at the origin (0, 0) of an X-Y coordinate system. Two points P and Q are situated at \((\sqrt{3}, \sqrt{3}) \, \text{mm}\) and \((\sqrt{6}, 0) \, \text{mm}\) respectively. The potential difference between the points P and Q will be:
0 V
\( \sqrt{6} \) V
\(\sqrt{3} \) V
3 V
To find the potential difference between points P and Q due to a charge placed at the origin, we use the formula for electric potential due to a point charge:
\(V = \frac{kQ}{r}\)
where \(V\) is the electric potential, \(k\approx8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2\) is the Coulomb's constant, \(Q\) is the charge, and \(r\) is the distance from the charge.
The correct answer is 0 V. The potential at two equidistant points from the same charge is equal, leading to a potential difference of zero.
The potential difference between two points P and Q due to a point charge Q is given by:
\[ \Delta V = KQ \left( \frac{1}{r_1} - \frac{1}{r_2} \right) \]
where
\[ r_1 = \sqrt{(\sqrt{3})^2 + (\sqrt{3})^2} = \sqrt{6} \quad \text{and} \quad r_2 = \sqrt{(\sqrt{6})^2 + 0^2} = \sqrt{6} \]
Since \(r_1 = r_2\), the potential difference is zero:
\[ \Delta V = 0 \]
Find work done in bringing charge q = 3nC from infinity to point A as shown in the figure : 
Two capacitors \( C_1 \) and \( C_2 \) are connected in parallel to a battery. Charge-time graph is shown below for the two capacitors. The energy stored with them are \( U_1 \) and \( U_2 \), respectively. Which of the given statements is true? 
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

The electrostatic potential is also known as the electric field potential, electric potential, or potential drop is defined as “The amount of work that is done in order to move a unit charge from a reference point to a specific point inside the field without producing an acceleration.”
SI unit of electrostatic potential - volt
Other units - statvolt
Symbol of electrostatic potential - V or φ
Dimensional formula - ML2T3I-1
The electric potential energy of the system is given by the following formula:
U = 1/(4πεº) × [q1q2/d]
Where q1 and q2 are the two charges that are separated by the distance d.