An electric charge \(10^{-6} \, \mu C\) is placed at the origin (0, 0) of an X-Y coordinate system. Two points P and Q are situated at \((\sqrt{3}, \sqrt{3}) \, \text{mm}\) and \((\sqrt{6}, 0) \, \text{mm}\) respectively. The potential difference between the points P and Q will be:
0 V
\( \sqrt{6} \) V
\(\sqrt{3} \) V
3 V
To find the potential difference between points P and Q due to a charge placed at the origin, we use the formula for electric potential due to a point charge:
\(V = \frac{kQ}{r}\)
where \(V\) is the electric potential, \(k\approx8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2\) is the Coulomb's constant, \(Q\) is the charge, and \(r\) is the distance from the charge.
The correct answer is 0 V. The potential at two equidistant points from the same charge is equal, leading to a potential difference of zero.
The potential difference between two points P and Q due to a point charge Q is given by:
\[ \Delta V = KQ \left( \frac{1}{r_1} - \frac{1}{r_2} \right) \]
where
\[ r_1 = \sqrt{(\sqrt{3})^2 + (\sqrt{3})^2} = \sqrt{6} \quad \text{and} \quad r_2 = \sqrt{(\sqrt{6})^2 + 0^2} = \sqrt{6} \]
Since \(r_1 = r_2\), the potential difference is zero:
\[ \Delta V = 0 \]
Two capacitors \( C_1 \) and \( C_2 \) are connected in parallel to a battery. Charge-time graph is shown below for the two capacitors. The energy stored with them are \( U_1 \) and \( U_2 \), respectively. Which of the given statements is true? 
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:

Designate whether each of the following compounds is aromatic or not aromatic.

The electrostatic potential is also known as the electric field potential, electric potential, or potential drop is defined as “The amount of work that is done in order to move a unit charge from a reference point to a specific point inside the field without producing an acceleration.”
SI unit of electrostatic potential - volt
Other units - statvolt
Symbol of electrostatic potential - V or φ
Dimensional formula - ML2T3I-1
The electric potential energy of the system is given by the following formula:
U = 1/(4πεº) × [q1q2/d]
Where q1 and q2 are the two charges that are separated by the distance d.