An electric charge \(10^{-6} \, \mu C\) is placed at the origin (0, 0) of an X-Y coordinate system. Two points P and Q are situated at \((\sqrt{3}, \sqrt{3}) \, \text{mm}\) and \((\sqrt{6}, 0) \, \text{mm}\) respectively. The potential difference between the points P and Q will be:
0 V
\( \sqrt{6} \) V
\(\sqrt{3} \) V
3 V
To find the potential difference between points P and Q due to a charge placed at the origin, we use the formula for electric potential due to a point charge:
\(V = \frac{kQ}{r}\)
where \(V\) is the electric potential, \(k\approx8.99 \times 10^9 \, \text{Nm}^2/\text{C}^2\) is the Coulomb's constant, \(Q\) is the charge, and \(r\) is the distance from the charge.
The correct answer is 0 V. The potential at two equidistant points from the same charge is equal, leading to a potential difference of zero.
The potential difference between two points P and Q due to a point charge Q is given by:
\[ \Delta V = KQ \left( \frac{1}{r_1} - \frac{1}{r_2} \right) \]
where
\[ r_1 = \sqrt{(\sqrt{3})^2 + (\sqrt{3})^2} = \sqrt{6} \quad \text{and} \quad r_2 = \sqrt{(\sqrt{6})^2 + 0^2} = \sqrt{6} \]
Since \(r_1 = r_2\), the potential difference is zero:
\[ \Delta V = 0 \]
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Time period of a simple pendulum is longer at the top of a mountain than that at the base of the mountain.
Reason (R): Time period of a simple pendulum decreases with increasing value of acceleration due to gravity and vice-versa. In the light of the above statements, choose the most appropriate answer from the options given below:
Arrange the following in the ascending order of wavelength (\( \lambda \)):
(A) Microwaves (\( \lambda_1 \))
(B) Ultraviolet rays (\( \lambda_2 \))
(C) Infrared rays (\( \lambda_3 \))
(D) X-rays (\( \lambda_4 \))
Choose the most appropriate answer from the options given below:


The electrostatic potential is also known as the electric field potential, electric potential, or potential drop is defined as “The amount of work that is done in order to move a unit charge from a reference point to a specific point inside the field without producing an acceleration.”
SI unit of electrostatic potential - volt
Other units - statvolt
Symbol of electrostatic potential - V or φ
Dimensional formula - ML2T3I-1
The electric potential energy of the system is given by the following formula:
U = 1/(4πεº) × [q1q2/d]
Where q1 and q2 are the two charges that are separated by the distance d.