Step 1. Calculate the Effective Vertical Component of the Magnetic Field:
Given:
\( B = 0.5 \, \text{G} = 0.5 \times 10^{-4} \, \text{T} \)
The vertical component of the magnetic field \( B_v \), considering the angle of dip \( \delta = 30^\circ \), is:
\( B_v = B \sin \delta = 0.5 \times 10^{-4} \times \sin 30^\circ = 0.5 \times 10^{-4} \times \frac{1}{2} = \frac{1}{4} \times 10^{-4} \, \text{T} \)
Step 2. Convert Angular Velocity from rpm to rad/s:
Angular velocity \( \omega \) in rad/s is given by:
\( \omega = 2 \pi \times f = 2 \pi \times \frac{1200}{60} = 2 \pi \times 20 = 40 \pi \, \text{rad/s} \)
Step 3. Determine the Radius of Rotation:
The length of each blade is \( \ell = 80 \, \text{cm} = 0.8 \, \text{m} \). Therefore, the effective radius \( r \) of rotation is:
\( r = 0.8 \, \text{m} \)
Step 4. Calculate the Induced emf:
The emf \( \varepsilon \) induced across the tips of the blades (assuming the emf induced across two opposite ends) is given by:
\( \varepsilon = \frac{1}{2} B_v \omega r^2 \)
Substituting the values:
\( \varepsilon = \frac{1}{2} \times \frac{1}{4} \times 10^{-4} \times 40 \pi \times (0.8)^2 \)
Simplifying further:
\( \varepsilon = \frac{1}{2} \times \frac{1}{4} \times 10^{-4} \times 40 \pi \times 0.64 = 32 \pi \times 10^{-5} \, \text{V} \)
Step 5. Conclude the Value of \( N \):
Comparing with \( N \pi \times 10^{-5} \, \text{V} \), we find:
\( N = 32 \)