Step 1. Calculate the Effective Vertical Component of the Magnetic Field:
Given:
\( B = 0.5 \, \text{G} = 0.5 \times 10^{-4} \, \text{T} \)
The vertical component of the magnetic field \( B_v \), considering the angle of dip \( \delta = 30^\circ \), is:
\( B_v = B \sin \delta = 0.5 \times 10^{-4} \times \sin 30^\circ = 0.5 \times 10^{-4} \times \frac{1}{2} = \frac{1}{4} \times 10^{-4} \, \text{T} \)
Step 2. Convert Angular Velocity from rpm to rad/s:
Angular velocity \( \omega \) in rad/s is given by:
\( \omega = 2 \pi \times f = 2 \pi \times \frac{1200}{60} = 2 \pi \times 20 = 40 \pi \, \text{rad/s} \)
Step 3. Determine the Radius of Rotation:
The length of each blade is \( \ell = 80 \, \text{cm} = 0.8 \, \text{m} \). Therefore, the effective radius \( r \) of rotation is:
\( r = 0.8 \, \text{m} \)
Step 4. Calculate the Induced emf:
The emf \( \varepsilon \) induced across the tips of the blades (assuming the emf induced across two opposite ends) is given by:
\( \varepsilon = \frac{1}{2} B_v \omega r^2 \)
Substituting the values:
\( \varepsilon = \frac{1}{2} \times \frac{1}{4} \times 10^{-4} \times 40 \pi \times (0.8)^2 \)
Simplifying further:
\( \varepsilon = \frac{1}{2} \times \frac{1}{4} \times 10^{-4} \times 40 \pi \times 0.64 = 32 \pi \times 10^{-5} \, \text{V} \)
Step 5. Conclude the Value of \( N \):
Comparing with \( N \pi \times 10^{-5} \, \text{V} \), we find:
\( N = 32 \)
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]