Step 1: Identify the given parameters.
Inductive reactance, \( X_L = 100 \, \Omega \)
Capacitive reactance, \( X_C = 50 \, \Omega \)
Resistance, \( R = 50 \, \Omega \)
RMS voltage of the AC source, \( V_{rms} = 10 \, V \)
Frequency of the AC source, \( f = 50 \, Hz \)
Step 2: Calculate the impedance \( Z \) of the series LCR circuit.
The impedance of a series LCR circuit is given by:
\[
Z = \sqrt{R^2 + (X_L - X_C)^2}
\]
Substitute the given values:
\[
Z = \sqrt{(50 \, \Omega)^2 + (100 \, \Omega - 50 \, \Omega)^2}
\]
\[
Z = \sqrt{(50)^2 + (50)^2} = \sqrt{2500 + 2500} = \sqrt{5000} \, \Omega
\]
\[
Z = 50\sqrt{2} \, \Omega
\]
Step 3: Calculate the RMS current \( I_{rms} \) in the circuit.
Using Ohm's law for AC circuits:
\[
I_{rms} = \frac{V_{rms}}{Z}
\]
Substitute the values of \( V_{rms} \) and \( Z \):
\[
I_{rms} = \frac{10 \, V}{50\sqrt{2} \, \Omega} = \frac{1}{5\sqrt{2}} \, A = \frac{\sqrt{2}}{10} \, A
\]
Step 4: Calculate the average power \( P_{avg} \) dissipated by the circuit.
The average power dissipated in an AC circuit is only through the resistor and is given by:
\[
P_{avg} = I_{rms}^2 R
\]
Substitute the values of \( I_{rms} \) and \( R \):
\[
P_{avg} = \left(\frac{\sqrt{2}}{10} \, A\right)^2 \times 50 \, \Omega
\]
\[
P_{avg} = \left(\frac{2}{100}\right) \times 50 \, W
\]
\[
P_{avg} = \frac{1}{50} \times 50 \, W
\]
\[
P_{avg} = 1 \, W
\]
The average power dissipated by the circuit is 1 W.