{Impulse} is the product of force and the time during which the force acts. It is equal to the change in momentum of an object. Mathematically, \( J = F \cdot t = \Delta p \).
Impulse (\( J \)) is defined as the change in momentum of an object. It can be calculated using the formula: \[ J = \Delta p = m \cdot v \] where:
\( m \) is the mass of the bullet,
\( v \) is the velocity of the bullet.
Given: \[ m = 10 \, \text{g} = 0.01 \, \text{kg} \\ v = 600 \, \text{m/s} \] Substituting the values: \[ J = 0.01 \, \text{kg} \times 600 \, \text{m/s} = 6 \, \text{Ns} \] Therefore, the impulse supplied to the gun is \( 6 \, \text{Ns} \).
A(g) $ \rightarrow $ B(g) + C(g) is a first order reaction.
The reaction was started with reactant A only. Which of the following expression is correct for rate constant k ?
$\mathrm{KMnO}_{4}$ acts as an oxidising agent in acidic medium. ' X ' is the difference between the oxidation states of Mn in reactant and product. ' Y ' is the number of ' d ' electrons present in the brown red precipitate formed at the end of the acetate ion test with neutral ferric chloride. The value of $\mathrm{X}+\mathrm{Y}$ is _______ .