{Impulse} is the product of force and the time during which the force acts. It is equal to the change in momentum of an object. Mathematically, \( J = F \cdot t = \Delta p \).
Impulse (\( J \)) is defined as the change in momentum of an object. It can be calculated using the formula: \[ J = \Delta p = m \cdot v \] where:
\( m \) is the mass of the bullet,
\( v \) is the velocity of the bullet.
Given: \[ m = 10 \, \text{g} = 0.01 \, \text{kg} \\ v = 600 \, \text{m/s} \] Substituting the values: \[ J = 0.01 \, \text{kg} \times 600 \, \text{m/s} = 6 \, \text{Ns} \] Therefore, the impulse supplied to the gun is \( 6 \, \text{Ns} \).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.