The relativistic factor \( \gamma \) is given by the formula:
\[
\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}
\]
Where:
- \( v = 5000 \, \text{m/s} \) is the velocity of the spaceship,
- \( c = 3 \times 10^8 \, \text{m/s} \) is the speed of light.
Substituting the values:
\[
\gamma = \frac{1}{\sqrt{1 - \frac{(5000)^2}{(3 \times 10^8)^2}}}
\]
\[
\gamma = \frac{1}{\sqrt{1 - \frac{25 \times 10^6}{9 \times 10^{16}}}} = \frac{1}{\sqrt{1 - 2.78 \times 10^{-10}}}
\]
\[
\gamma \approx 1.0001
\]
Thus, the relativistic factor \( \gamma \) for the spaceship is approximately \( 1.0001 \).