Consider the total time of flight \( T \) as:
\[ T = \sqrt{\frac{2h}{g}} + \sqrt{\frac{2(H - h)}{g}} \]To find the value of \( \frac{H}{h} \) that maximizes the time, we differentiate \( T \) with respect to \( h \) and set it to zero:
\[ \frac{dT}{dh} = 0 \implies \frac{\sqrt{2}}{g} \left( -\frac{1}{2\sqrt{H - h}} + \frac{1}{2\sqrt{h}} \right) = 0 \]Solving for \( h \):
\[ \sqrt{H - h} = \sqrt{h} \implies h = \frac{H}{2} \implies \frac{H}{h} = 2 \]Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: