Given:
\[ \vec{F} = (6t \, \hat{i} + 6t^2 \, \hat{j}) \, \text{N} \]
The mass of the body is \( m = 2 \, \text{kg} \). According to Newton's second law:
\[ \vec{F} = m\vec{a} \implies \vec{a} = \frac{\vec{F}}{m} = \left(3t \, \hat{i} + 3t^2 \, \hat{j}\right) \, \text{m/s}^2 \]
The velocity \(\vec{v}\) is obtained by integrating the acceleration:
\[ \vec{v} = \int \vec{a} \, dt = \int \left(3t \, \hat{i} + 3t^2 \, \hat{j}\right) dt = \left(\frac{3t^2}{2} \, \hat{i} + t^3 \, \hat{j}\right) \, \text{m/s} \]
The power developed by the force is given by:
\[ P = \vec{F} \cdot \vec{v} \]
Calculating the dot product:
\[ P = (6t \, \hat{i} + 6t^2 \, \hat{j}) \cdot \left(\frac{3t^2}{2} \, \hat{i} + t^3 \, \hat{j}\right) \]
\[ P = 6t \cdot \frac{3t^2}{2} + 6t^2 \cdot t^3 \]
\[ P = 9t^3 + 6t^5 \, \text{W} \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).