Given:
\[ \vec{F} = (6t \, \hat{i} + 6t^2 \, \hat{j}) \, \text{N} \]
The mass of the body is \( m = 2 \, \text{kg} \). According to Newton's second law:
\[ \vec{F} = m\vec{a} \implies \vec{a} = \frac{\vec{F}}{m} = \left(3t \, \hat{i} + 3t^2 \, \hat{j}\right) \, \text{m/s}^2 \]
The velocity \(\vec{v}\) is obtained by integrating the acceleration:
\[ \vec{v} = \int \vec{a} \, dt = \int \left(3t \, \hat{i} + 3t^2 \, \hat{j}\right) dt = \left(\frac{3t^2}{2} \, \hat{i} + t^3 \, \hat{j}\right) \, \text{m/s} \]
The power developed by the force is given by:
\[ P = \vec{F} \cdot \vec{v} \]
Calculating the dot product:
\[ P = (6t \, \hat{i} + 6t^2 \, \hat{j}) \cdot \left(\frac{3t^2}{2} \, \hat{i} + t^3 \, \hat{j}\right) \]
\[ P = 6t \cdot \frac{3t^2}{2} + 6t^2 \cdot t^3 \]
\[ P = 9t^3 + 6t^5 \, \text{W} \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: