To find the power developed by a time-dependent force acting on a body, we follow these steps:
Therefore, the correct option is: (9t3 + 6t5) W.
Given:
\[ \vec{F} = (6t \, \hat{i} + 6t^2 \, \hat{j}) \, \text{N} \]
The mass of the body is \( m = 2 \, \text{kg} \). According to Newton's second law:
\[ \vec{F} = m\vec{a} \implies \vec{a} = \frac{\vec{F}}{m} = \left(3t \, \hat{i} + 3t^2 \, \hat{j}\right) \, \text{m/s}^2 \]
The velocity \(\vec{v}\) is obtained by integrating the acceleration:
\[ \vec{v} = \int \vec{a} \, dt = \int \left(3t \, \hat{i} + 3t^2 \, \hat{j}\right) dt = \left(\frac{3t^2}{2} \, \hat{i} + t^3 \, \hat{j}\right) \, \text{m/s} \]
The power developed by the force is given by:
\[ P = \vec{F} \cdot \vec{v} \]
Calculating the dot product:
\[ P = (6t \, \hat{i} + 6t^2 \, \hat{j}) \cdot \left(\frac{3t^2}{2} \, \hat{i} + t^3 \, \hat{j}\right) \]
\[ P = 6t \cdot \frac{3t^2}{2} + 6t^2 \cdot t^3 \]
\[ P = 9t^3 + 6t^5 \, \text{W} \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).

Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below:

Current passing through a wire as function of time is given as $I(t)=0.02 \mathrm{t}+0.01 \mathrm{~A}$. The charge that will flow through the wire from $t=1 \mathrm{~s}$ to $\mathrm{t}=2 \mathrm{~s}$ is: