To find the power developed by a time-dependent force acting on a body, we follow these steps:
Therefore, the correct option is: (9t3 + 6t5) W.
Given:
\[ \vec{F} = (6t \, \hat{i} + 6t^2 \, \hat{j}) \, \text{N} \]
The mass of the body is \( m = 2 \, \text{kg} \). According to Newton's second law:
\[ \vec{F} = m\vec{a} \implies \vec{a} = \frac{\vec{F}}{m} = \left(3t \, \hat{i} + 3t^2 \, \hat{j}\right) \, \text{m/s}^2 \]
The velocity \(\vec{v}\) is obtained by integrating the acceleration:
\[ \vec{v} = \int \vec{a} \, dt = \int \left(3t \, \hat{i} + 3t^2 \, \hat{j}\right) dt = \left(\frac{3t^2}{2} \, \hat{i} + t^3 \, \hat{j}\right) \, \text{m/s} \]
The power developed by the force is given by:
\[ P = \vec{F} \cdot \vec{v} \]
Calculating the dot product:
\[ P = (6t \, \hat{i} + 6t^2 \, \hat{j}) \cdot \left(\frac{3t^2}{2} \, \hat{i} + t^3 \, \hat{j}\right) \]
\[ P = 6t \cdot \frac{3t^2}{2} + 6t^2 \cdot t^3 \]
\[ P = 9t^3 + 6t^5 \, \text{W} \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.