\(\frac{1}{2} \times 1.5 \times 60^2 \times \frac{1}{4} = 100 \times 0.42 \times \triangle \;T\)
\(\triangle\; T = \frac{1.5\times 60^2}{8\times 100 \times 0.42} = 16.07 \;\degree C\)
Let \( A = \{-3, -2, -1, 0, 1, 2, 3\} \). A relation \( R \) is defined such that \( xRy \) if \( y = \max(x, 1) \). The number of elements required to make it reflexive is \( l \), the number of elements required to make it symmetric is \( m \), and the number of elements in the relation \( R \) is \( n \). Then the value of \( l + m + n \) is equal to:
For hydrogen-like species, which of the following graphs provides the most appropriate representation of \( E \) vs \( Z \) plot for a constant \( n \)?
[E : Energy of the stationary state, Z : atomic number, n = principal quantum number]
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
The work and kinetic energy principle (also known as the work-energy theorem) asserts that the work done by all forces acting on a particle equals the change in the particle's kinetic energy. By defining the work of the torque and rotational kinetic energy, this definition can be extended to rigid bodies.
The change in kinetic energy KE is equal to the work W done by the net force on a particle is given by,
W = ΔKE = ½ mv2f − ½ mv2i
Where,
vi → Speeds of the particle before the application of force
vf → Speeds of the particle after the application of force
m → Particle’s mass
Note: Energy and Momentum are related by, E = p2 / 2m.