Step 1: Given data.
Amount of gas, \( n = 0.5 \, \text{mol} \)
Initial temperature, \( T_1 = 298 \, \text{K} \)
Heat supplied, \( q = 500 \, \text{J} \)
Gas: Argon (monoatomic ideal gas)
Gas constant, \( R = 8.3 \, \text{J mol}^{-1} \text{K}^{-1} \)
Step 2: Relation between heat, internal energy, and work.
For any process, the first law of thermodynamics gives:
\[
q = \Delta U + W
\]
For a monoatomic gas, the molar heat capacities are:
\[
C_V = \frac{3R}{2}, \quad C_P = \frac{5R}{2}
\]
and the relation between \( C_P \) and \( C_V \) is \( C_P - C_V = R \).
Step 3: Case of constant pressure (open system at 1 atm).
At constant pressure, heat absorbed is:
\[
q = n C_P \Delta T
\]
Substitute the values:
\[
500 = 0.5 \times \frac{5 \times 8.3}{2} \times \Delta T
\]
\[
500 = 0.5 \times 20.75 \times \Delta T
\]
\[
\Delta T = \frac{500}{10.375} = 48.2 \, \text{K}
\]
Hence, the final temperature is:
\[
T_2 = T_1 + \Delta T = 298 + 48.2 = 346.2 \approx 348 \, \text{K}
\]
Step 4: Change in internal energy.
\[
\Delta U = n C_V \Delta T = 0.5 \times \frac{3 \times 8.3}{2} \times 48.2
\]
\[
\Delta U = 0.5 \times 12.45 \times 48.2 = 300 \, \text{J}
\]
Step 5: Final results.
Final temperature \( T_2 = 348 \, \text{K} \)
Change in internal energy \( \Delta U = 300 \, \text{J} \)
Final Answer:
\[
\boxed{T_2 = 348 \, \text{K}, \quad \Delta U = 300 \, \text{J}}
\]