The points A, B, C, and D are coplanar if the scalar triple product of the vectors $\overrightarrow{AB}$, $\overrightarrow{AC}$, and $\overrightarrow{AD}$ is zero. Let's find these vectors:
$\overrightarrow{AB} = i + 2j + 3k − (5i + 5j + 2λk) = −4i − 3j + (3 − 2λ)k$
$\overrightarrow{AC} = −2i + λj + 4k − (5i + 5j + 2λk) = −7i + (λ − 5)j + (4 − 2λ)k$
$\overrightarrow{AD} = −i + 5j + 6k − (5i + 5j + 2λk) = −6i + 0j + (6 − 2λ)k$
The scalar triple product is given by the determinant:
$\begin{vmatrix} -4 & -3 & 3 - 2λ \\ -7 & λ - 5 & 4 - 2λ \\ -6 & 0 & 6 - 2λ \end{vmatrix} = 0$
Expanding this determinant:
$-4λ^2 + 20λ − 24 = 0$
Dividing by -4:
$λ^2 − 5λ + 6 = 0$
Factoring the quadratic equation:
$(λ − 2)(λ − 3) = 0$
Thus, the solutions are $λ = 2$ and $λ = 3$. Therefore, $S = \{2, 3\}$.
Now we compute the sum:
$\sum_{λ \in S} (λ + 2)^2 = (2 + 2)^2 + (3 + 2)^2 = 16 + 25 = 41$
Conclusion: The value of $\sum_{λ \in S} (λ + 2)^2$ is 41.
Match the LIST-I with LIST-II
| LIST-I (Expressions) | LIST-II (Values) | ||
|---|---|---|---|
| A. | \( i^{49} \) | I. | 1 |
| B. | \( i^{38} \) | II. | \(-i\) |
| C. | \( i^{103} \) | III. | \(i\) |
| D. | \( i^{92} \) | IV. | \(-1\) |
Choose the correct answer from the options given below:
Let \( a_1, a_2, a_3, \ldots \) be in an A.P. such that \[ \sum_{k=1}^{12} a_{2k-1} = -\frac{72}{5} a_1, \quad a_1 \neq 0. \] If \[ \sum_{k=1}^{n} a_k = 0, \] then \( n \) is:
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is: