The points A, B, C, and D are coplanar if the scalar triple product of the vectors $\overrightarrow{AB}$, $\overrightarrow{AC}$, and $\overrightarrow{AD}$ is zero. Let's find these vectors:
$\overrightarrow{AB} = i + 2j + 3k − (5i + 5j + 2λk) = −4i − 3j + (3 − 2λ)k$
$\overrightarrow{AC} = −2i + λj + 4k − (5i + 5j + 2λk) = −7i + (λ − 5)j + (4 − 2λ)k$
$\overrightarrow{AD} = −i + 5j + 6k − (5i + 5j + 2λk) = −6i + 0j + (6 − 2λ)k$
The scalar triple product is given by the determinant:
$\begin{vmatrix} -4 & -3 & 3 - 2λ \\ -7 & λ - 5 & 4 - 2λ \\ -6 & 0 & 6 - 2λ \end{vmatrix} = 0$
Expanding this determinant:
$-4λ^2 + 20λ − 24 = 0$
Dividing by -4:
$λ^2 − 5λ + 6 = 0$
Factoring the quadratic equation:
$(λ − 2)(λ − 3) = 0$
Thus, the solutions are $λ = 2$ and $λ = 3$. Therefore, $S = \{2, 3\}$.
Now we compute the sum:
$\sum_{λ \in S} (λ + 2)^2 = (2 + 2)^2 + (3 + 2)^2 = 16 + 25 = 41$
Conclusion: The value of $\sum_{λ \in S} (λ + 2)^2$ is 41.
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to