Step 1: Understanding the inverse tangent function.
The principal value of \( \tan^{-1}(x) \) is the angle \( \theta \) in the range \( \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \) such that \( \tan(\theta) = x \).
Step 2: Applying the inverse tangent to \( \sqrt{3} \).
We know that: \[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] Step 3: Conclusion.
Thus, the principal value of \( \tan^{-1}(\sqrt{3}) \) is \( \frac{\pi}{3} \), corresponding to option (b).