Step 1: Represent the system of equations in matrix form.
We can write the system of equations as a matrix equation \( AX = B \), where:
\[
A =
\begin{bmatrix}
1 & 2 & -3 \\
3 & 2 & -2 \\
2 & -1 & 1
\end{bmatrix},
\quad
X =
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix},
\quad
B =
\begin{bmatrix}
6 \\
3 \\
2
\end{bmatrix}
\]
Step 2: Find the inverse of matrix \( A \).
We need to find \( A^{-1} \) to solve for \( X \). The inverse of a \( 3 \times 3 \) matrix \( A \) is given by:
\[
A^{-1} = \frac{1}{\det(A)} \cdot \text{adj}(A)
\]
First, calculate the determinant of \( A \):
\[
\det(A)
= 1 \cdot
\begin{vmatrix}
2 & -2 \\
-1 & 1
\end{vmatrix}
- 2 \cdot
\begin{vmatrix}
3 & -2 \\
2 & 1
\end{vmatrix}
+ (-3) \cdot
\begin{vmatrix}
3 & 2 \\
2 & -1
\end{vmatrix}
\]
Calculating the individual \( 2 \times 2 \) determinants:
\[
\begin{vmatrix}
2 & -2 \\
-1 & 1
\end{vmatrix}
= 2 \cdot 1 - (-2)(-1) = 2 - 2 = 0
\]
\[
\begin{vmatrix}
3 & -2 \\
2 & 1
\end{vmatrix}
= 3 \cdot 1 - (-2) \cdot 2 = 3 + 4 = 7
\]
\[
\begin{vmatrix}
3 & 2 \\
2 & -1
\end{vmatrix}
= 3 \cdot (-1) - 2 \cdot 2 = -3 - 4 = -7
\]
Thus:
\[
\det(A) = 1(0) - 2(7) + (-3)(-7) = 0 - 14 + 21 = 7
\]
Now, find the adjugate matrix \( \text{adj}(A) \) by calculating cofactors and taking their transpose.
Finally, compute:
\[
A^{-1} = \frac{1}{7} \cdot \text{adj}(A)
\]
Step 3: Solve for \( X \).
Multiply both sides of the matrix equation by \( A^{-1} \):
\[
X = A^{-1} B
\]
Substituting the values of \( A^{-1} \) and \( B \), we obtain the values of \( x \), \( y \), and \( z \).
Conclusion:
The solution of the system of equations is given by the vector
\[
X =
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]
which provides the required values of \( x \), \( y \), and \( z \).