>
MHT CET
>
Mathematics
List of top Mathematics Questions asked in MHT CET
Evaluate the integral
\[ \int \frac{dx}{\sqrt{(x - 1)(x - 2)}} = \text{?}
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
The equation of the circle whose end points of a diameter are the centres of the circles
\[ x^2 + y^2 + 2x - 4y + 1 = 0 \quad \text{and} \quad x^2 + y^2 - 8x + 6y + 17 = 0 \]
is
MHT CET - 2020
MHT CET
Mathematics
Coordinate Geometry
If
\[ \tan u = \frac{\sqrt{1 - x}}{\sqrt{1 + x}}, \quad \cos v = 4x^3 - 3x, \quad \text{then} \quad \frac{du}{dv} = \text{?}
MHT CET - 2020
MHT CET
Mathematics
Differentiation
Evaluate the integral
\[ \int \frac{(1 + \log x)}{\cos^2(\log x)} \, dx \]
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
If
\[ f(x) = \left[ \tan \left( \frac{\pi}{4} + x \right) \right]^{\frac{1}{x}} \quad \text{if} \quad x \neq 0 \] \[ f(x) = k \quad \text{if} \quad x = 0 \]
is continuous at
\( x = 0 \), then \( k = \)
MHT CET - 2020
MHT CET
Mathematics
Limits
The equation of a line passing through the point
\( (2, 4, 6) \)
and parallel to the line
\[ 3x + 4 = 4y - 1 = 1 - 4z \]
is
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
The area of the region bounded by the curve
\( y = 4x - x^2 \)
and the x-axis is
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
The equation of the plane passing through the points
\( (2, 3, 1), (4, -5, 3) \)
and parallel to the y-axis is
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
The focal distance of the point \( (4, 4) \) on the parabola with vertex at \( (0, 0) \) and symmetric about the y-axis is
MHT CET - 2020
MHT CET
Mathematics
Conic sections
The maximum value of the function
\( \frac{\log x}{x}, x \neq 0 \)
is
MHT CET - 2020
MHT CET
Mathematics
Applications of Derivatives
If for the harmonic progression,
\( t_7 = \frac{1}{10}, \, t_{12} = \frac{1}{25}, \)
then
\( t_{20} = \)
MHT CET - 2020
MHT CET
Mathematics
sequences
If
\[ \mathbf{a} = 2\hat{i} + 3\hat{j} - \hat{k}, \quad \mathbf{b} = -\hat{i} + 2\hat{j} - 4\hat{k}, \quad \mathbf{c} = \hat{i} + \hat{j} + \hat{k} \]
then
\( (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{c}) = \)
MHT CET - 2020
MHT CET
Mathematics
Vectors
If the vectors \( \hat{i} + 2\hat{j} + \hat{k} \) and \( \hat{i} + 6\hat{j} + 4\hat{k} \) are collinear, then the values of \( x \) and \( y \) are respectively
MHT CET - 2020
MHT CET
Mathematics
Vectors
If
\[ \tan^{-1} x + \tan^{-1} y = c \text{ is the general solution of the differential equation} \]
MHT CET - 2020
MHT CET
Mathematics
Differential equations
If \( A \) and \( B \) are independent events such that odds in favour of \( A \) is 2:3 and odds against \( B \) is 4:5, then \( P(A \cap B) = \)
MHT CET - 2020
MHT CET
Mathematics
Probability
The approximate value of
\( \cot^{-1} (1 \cdot 001) \)
is
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
If the line
\( 6x - y - 4 = 0 \)
touches the curve
\( y^2 = ax^3 + b \)
at the point
(1, 2),
then
\( a + b = \)
MHT CET - 2020
MHT CET
Mathematics
Applications of Derivatives
If
\[ \mathbf{a} = \hat{i} + \hat{j} + \hat{k}, \quad \mathbf{b} = \hat{i} - \hat{j} + 2\hat{k}, \quad \mathbf{c} = x\hat{i} + \hat{j} + (x - 1)\hat{k} \]
If the vector \( \mathbf{c} \) lies in the plane of \( \mathbf{a} \) and \( \mathbf{b} \), then \( x = \)
MHT CET - 2020
MHT CET
Mathematics
Vectors
The direction cosines of a line which makes equal acute angles with the co-ordinate axes are
MHT CET - 2020
MHT CET
Mathematics
Three Dimensional Geometry
With usual notations, if in \( \triangle ABC \), \( s \) is the semi-perimeter and \( (s - a)(s - b) = (s - c) \), then \( \triangle ABC \) is
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
The statement pattern
\( \sim (p \vee q) \vee (\sim p \wedge q) \)
is equivalent to
MHT CET - 2020
MHT CET
Mathematics
mathematical reasoning
If
\[ \cos x + \cos y = -\cos \alpha, \quad \sin x + \sin y = -\sin \alpha, \quad \text{then} \quad \cot \left( \frac{x + y}{2} \right) = \]
MHT CET - 2020
MHT CET
Mathematics
Trigonometry
Evaluate the integral
\[ \int x^3 e^{x^2} \, dx \]
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
Evaluate the integral
\[ \int_0^{\frac{\pi}{2}} \frac{\sqrt[3]{\sec x}}{\sqrt[3]{\sec x} + \sqrt[3]{\csc x}} \, dx \]
MHT CET - 2020
MHT CET
Mathematics
Integral Calculus
If \( f : \mathbb{R} \to \mathbb{R}, g : \mathbb{R} \to \mathbb{R} \) are defined by
\[ f(x) = x^2 - 3x + 4 \quad \text{and} \quad g(x) = 2x + 1, \quad \text{then the value of} \quad x \text{ for which} \quad f(x) = f \circ g(x) \text{ is} \]
MHT CET - 2020
MHT CET
Mathematics
Functions
Prev
1
...
16
17
18
19
20
...
40
Next