The cartesian equation of a line is \(\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{2}\). Write its vector form.
Find the cartesian equation of the line that passes through the point(-2,4,-5)and parallel to the line given by \(\frac{x+3}{3}\)=\(\frac{y-4}{5}\)=\(\frac{z+8}{6}\)
Find \( λ \) and \( μ\) if \((2\hat{i}+6\hat{j}+7\hat{k})\times(\hat{i}+λ\hat{j}+μ\hat{k})=\vec{0}.\)
Find the vector equation of the plane passing through the intersection of the planes
\(\overrightarrow r.(2\hat i+2\hat j-3\hat k)=7\),\(\overrightarrow r.(2\hat i+5\hat j+3\hat k)=9\) and through the point ( 2, 1, 3 ).
Find the equation of the line in vector and in cartesian form that passes through the point with position vector 2\(\hat i\)-\(\hat j\)+4\(\hat k\) and is in the direction \(\hat i\)+2\(\hat j\)-\(\hat k\).
Find the equation of the plane through the intersection of the planes3x-y+2z-4 =0 and x+y+z-2=0 and the point (2, 2, 1).
Find the equation of the line that passes through the point(1,2,3)and is parallel to the vector 3\(\hat i\)+2\(\hat j\)-2\(\hat k\).
Find the intercepts cut off by the plane 2x+y-z = 5
Find the equation of the planes that passes through three points.
(a) (1,1,-1),(6,4,-5),(-4,-2,-3)
(b) (1,1,0),(1,2,1),(-2,2,-1).
Show that the three lines with direction cosines\(\frac{12}{13}\),\(-\frac{3}{13}\),\(-\frac{4}{13}\) ; \(\frac{4}{13}\),\(\frac{12}{13}\),\(\frac{3}{13}\);\(\frac{3}{13}\),\(-\frac{4}{13}\),\(\frac{12}{13}\) are mutually perpendicular.
Find the angle between the following pairs of lines:
(i)\(\frac{x-2}{2}=\frac{y-1}{5}=\frac{z+3}{-3}\) and \(\frac{x+2}{-1}=\frac{y-4}{8}=\frac{z-5}{4}\)
(ii \(\frac{x}{2}=\frac{y}{2}=\frac{z}{1}\) and \(\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}\)
In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
(a) 2x+3y+4z-12=0 (b) 3y+4z-6=0
(c)x+y+z=1 (d) 5y+8=0
Find the vector and cartesian equation of the planes
(a) that passes through the point (1,0,-2)and the normal to the plane is \(\hat i+\hat j-\hat k\).
(b) that passes through the point(1,4,6)and the normal vector to the plane is \(\hat i-2\hat j+\hat k\).