Find the vector and cartesian equation of the planes
(a) that passes through the point (1,0,-2)and the normal to the plane is \(\hat i+\hat j-\hat k\).
(b) that passes through the point(1,4,6)and the normal vector to the plane is \(\hat i-2\hat j+\hat k\).
(a) The position vector of point (1,0,-2) is \(\overrightarrow a=\hat i-2\hat k\)
The normal vector N→ perpendicular to the plane is \(\overrightarrow N=\hat i+\hat j-\hat k\)
The vector equation of the plane is given by (\(\overrightarrow r-\overrightarrow a\)).\(\overrightarrow N\)=0
\(\Rightarrow [\overrightarrow r-(\hat i-2\hat k)].(\hat i+\hat j-\hat k)=0\)...(1)
\(\overrightarrow r\) is the position vector of any point P(x,y,z) in the plane.
∴ \(\overrightarrow r=x\hat i+y\hat j+z\hat k\)
Therefore, equation(1) becomes
[\((x\hat i+y\hat j+z\hat k)\)-\((\hat i-2\hat k)].(\hat i+\hat j-\hat k)=0\)
\(\Rightarrow [(x-1)\hat i+y\hat j+(z+2)\hat k].(\hat i+\hat j-\hat k)=0\)
\(\Rightarrow\) (x-1)+y-(z+2)=0
\(\Rightarrow\) x+y-z-3=0
\(\Rightarrow\) x+y-z=3
This is the cartesian equation of the required plane.
(b) The position vector of the point (1,4,6) is \(\overrightarrow a=\hat i+4\hat j+6\hat k\)
The normal vector \(\overrightarrow N\) perpendicular to the plane is \(\overrightarrow N=\hat i-2\hat j+\hat k\)
The vector equation of the plane is given by \((\overrightarrow r-\overrightarrow a).\overrightarrow N\) =0
\(\Rightarrow [ \overrightarrow r\)-(\(\hat i+4\hat j+6\hat k\))].(\(\hat i-2\hat j+\hat k\))=0...(1)
\(\overrightarrow r\) is the position vector of of any point P(x,y,z)in the plane.
∴\(\overrightarrow r\) =\(x\hat i+y\hat j+z\hat k\)
Therefore, equation(1) becomes
[(\(x\hat i+y\hat j+z\hat k\))-(\(\hat i+4\hat j+6\hat k\))].(\(\hat i-2\hat j+\hat k\))=0
\(\Rightarrow [(x-1)\hat i+(y-4)\hat j+(z-6)\hat k].(\hat i-2\hat j+\hat k)=0\)
\(\Rightarrow\) (x-1)-2(y-4)+(z-6)=0
\(\Rightarrow\) x-2y+z+1=0
This is the cartesian equation of the required plane.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
From the following information, calculate the 'Proprietary Ratio':
Using the worksheet, find out the error and its reason for the given 'VLOOKUP' syntax:
\[ \begin{array}{|c|c|c|c|} \hline \text{S. No.} & \text{Consumables} & \text{Price in FY 21-22} & \text{Price in FY 23-24} \\ \hline 1 & \text{Muskmelon} & 45 & 122 \\ 2 & \text{Watermelon} & 9 & 21 \\ 3 & \text{Squash} & 22 & 35 \\ 4 & \text{Gourd} & 47 & 68 \\ 5 & \text{Curd} & 49 & 66 \\ 6 & \text{Brisket} & 33 & 43 \\ 7 & \text{Poultry} & 88 & 96 \\ \hline \end{array} \]
(i) =VLOOKUP(B1, B4 : D6, 2, 0)
(ii) =SQRT(VLOOKUP(C2, C2 : D8, 2, 0) – 100)
(iii) =VLOOKUP(B5, B6 : D8, 1, 0)
(iv) =VLOOKUP(B3, B2 : D8, 5, 0)
(v) =VLOOKUP(B5, B3 : D8, 0, 0)
(vi) =VLOOKUP(B2, B2 : D7, 2, 0)/0
A surface comprising all the straight lines that join any two points lying on it is called a plane in geometry. A plane is defined through any of the following uniquely: