In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
(a) 2x+3y+4z-12=0 (b) 3y+4z-6=0
(c)x+y+z=1 (d) 5y+8=0
(a) Let the coordinates of the foot of the perpendicular P from the origin to the plane be (x1,y1,z1).
2x+3y+4z-12=0
\(\Rightarrow \) 2x+3y+4z=12...(1)
The direction ratios of normal are 2, 3, and 4.
∴ \(\sqrt{(2)^2+(3)^2+(4)^2}=\sqrt{29}\)
Dividing both sides of equation (1) by \(\sqrt{29}\), we obtain
\(\frac{2}{\sqrt{29}}x+\frac{3}{\sqrt{29}}y+\frac{4}{\sqrt{29}}z=\frac{12}{\sqrt{29}}\)
This equation is of the form lx+my+nz=d, where l, m, n are the direction cosines of normal to the plane and d is the distance of normal from the origin.
The coordinates of the foot of the perpendicular are given by (ld, md, nd).
Therefore, the coordinates of the foot of the perpendicular are
\(\bigg(\frac{2}{\sqrt{29}}.\frac{12}{\sqrt{29}}.\frac{3}{\sqrt{29}}.\frac{12}{\sqrt{29}}.\frac{4}{\sqrt{29}}.\frac{12}{\sqrt{29}}\bigg)\)i.e., \(\bigg(\frac{24}{29}.\frac{36}{49}.\frac{48}{29}\bigg)\).
(b) Let the coordinates of the foot of perpendicular P from the origin to the plane be (x1,y1,z1).
3y+4z-6=0
\(\Rightarrow\) 0x+3y+4z=6...(1)
The direction ratios of the normal are 0, 3, and 4.
∴ \(\sqrt{0+3^2+4^2}=5\)
Dividing both sides of equation (1) by 5, we obtain
\(0x+\frac{3}{5}y+\frac{4}{5}z=\frac{6}{5}\)
This equation is of the form lx+my+nz=d, where l,m,n are the direction cosines of normal to the plane and d is the distance of normal from the origin.
The coordinates of the foot of the perpendicular are given by (ld,md,nd).
Therefore, the coordinates of the foot of the perpendicular are
\(\bigg(0,\frac{3}{5},\frac{6}{5},\frac{4}{5},\frac{6}{5}\bigg)\)i.e., \(\bigg(0,\frac{18}{25},\frac{24}{25}\bigg).\).
(c) Let the coordinates of the foot of perpendicular P from the origin to the plane be (x1,y1,z1).
x+y+z=1...(1)
The direction ratios of the normal are 1, 1, and 1.
∴\(\sqrt{1^2+1^2+1^2}=\sqrt3\)
Dividing both sides of equation(1) by \(\sqrt 3\), we obtain
\(\frac{1}{\sqrt 3}x+\frac{1}{\sqrt 3}y+\frac{1}{\sqrt 3}z=\frac{1}{\sqrt 3}\)
This equation is of the form lx+my+nz=d,where l,m,n are the direction cosines of normal to the plane and d is the distance of normal from the origin.
The coordinates of the foot of the perpendicular are given by (ld,md,nd)
Therefore, the coordinates of the foot of the perpendicular are
\(\bigg(\frac{1}{\sqrt 3}.\frac{1}{\sqrt 3}.\frac{1}{\sqrt 3}.\frac{1}{\sqrt 3}.\frac{1}{\sqrt 3}.\frac{1}{\sqrt 3}\bigg)\)i.e., \(\bigg(\frac{1}{3}.\frac{1}{3}.\frac{1}{3}.\bigg)\).
(d) Let the coordinates of the foot of perpendicular P from the origin to the plane be (x1,y1,z1).
5y+8=0
\(\Rightarrow\) 0x-5y+0z=8...(1)
The direction ratios of the normal are 0,-5,and 0.
∴\(\sqrt{0+(-5)^2+0}\) = 5
Dividing both sides of equation(1) by 5,we obtain
-y= \(\frac{8}{5}\)
This equation is of the form lx+my+nz=d, where l,m,n are the direction cosines of normal to the plane and d is the distance of normal from the origin.
The coordinates of the foot of the perpendicular are given by (ld,md,nd).
Therefore, the coordinates of the foot of the perpendicular are
\(\bigg(0,-1\bigg(\frac{8}{5}\bigg),0\bigg)\)i.e., \(\bigg(0,-\frac{8}{5},0\bigg)\).
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
If \(\begin{vmatrix} 2x & 3 \\ x & -8 \\ \end{vmatrix} = 0\), then the value of \(x\) is:
A surface comprising all the straight lines that join any two points lying on it is called a plane in geometry. A plane is defined through any of the following uniquely: