>
Mathematics
List of top Mathematics Questions
Equation of the tangent to the circle, at the point
$(1, -1)$
, whose centre is the point of intersection of the straight lines
$x - y = 1$
and
$+ y = 3$
is :
JEE Main - 2016
JEE Main
Mathematics
Conic sections
An experiment succeeds twice as often as it fails. The probability of at least
$5$
successes in the six trials of this experiment is :
JEE Main - 2016
JEE Main
Mathematics
Probability
The mean of
$5$
observations is
$5$
and their variance is
$124$
. If three of the observations are
$1, 2$
and
$6$
; then the mean deviation from the mean of the data is :
JEE Main - 2016
JEE Main
Mathematics
Mean Deviation
Let
$P = \{ \theta : \sin \theta - \cos \theta = \sqrt{2} \cos \theta \}$
and
$Q = \{\theta : \sin \theta + \cos \theta = \sqrt{2} \sin \theta \}$
be two sets. Then :
JEE Main - 2016
JEE Main
Mathematics
Trigonometric Functions
The sum of all real values of
$x$
satisfying the equation
$(x^2 - 5x + 5)^{x^2 + 4x -60} = 1 $
is
JEE Main - 2016
JEE Main
Mathematics
Complex Numbers and Quadratic Equations
Let
$f (x) = \frac{ax+ b}{cx + d} $
, then
$fof(x) = x$
, provided that :
BITSAT - 2016
BITSAT
Mathematics
Functions
A ray of light coming from the point $(1, 2)$ is reflected at a point $A$ on the $x$-axis and then passes through the point $(5, 3)$. The co-ordinates of the point $A$ is
BITSAT - 2016
BITSAT
Mathematics
Straight lines
The line joining $(5,0)$ to $((10 \cos \theta, 10 \sin \theta)$ is divided internally in the ratio $2: 3$ at $P$. If $q$ varies, then the locus of $P$ is
BITSAT - 2016
BITSAT
Mathematics
Straight lines
The number of integral values of $\lambda$ for which $x^2 + y^2 + \lambda x + (1 - \lambda )y + 5 = 0 $ is the equation of a circle whose radius cannot exceed $5$, is
BITSAT - 2016
BITSAT
Mathematics
Straight lines
All the words that can be formed using alphabets
$A, H, L, U$
and
$R$
are written as in a dictionary (no alphabet is repeated). Rank of the word RAHUL is
BITSAT - 2016
BITSAT
Mathematics
Permutations
Consider the following statements in respect of the function
$f(x)=x^{3}-1, x \in[-1,1]$
I.
$f(x)$
is increasing in
$[-1,1]$
II.
$f(x)$
has no root in
$(-1,1)$
. Which of the statements given above is/are correct?
BITSAT - 2016
BITSAT
Mathematics
Increasing and Decreasing Functions
The lengths of the tangent drawn from any point on the circle $15x^2 +15y^2 - 48x + 64y = 0$ to the two circles $5x^2 + 5y^2 - 24x + 32y + 75 = 0$ and $5x^2 + 5y^2 - 48x + 64y + 300 = 0$ are in the ratio of
BITSAT - 2016
BITSAT
Mathematics
Circle
The length of the chord $x + y = 3$ intercepted by the circle $x^2 + y^2 - 2x - 2y - 2 = 0$ is
BITSAT - 2016
BITSAT
Mathematics
Circle
If three vertices of a regular hexagon are chosen at random, then the chance that they form an equilateral triangle is :
BITSAT - 2016
BITSAT
Mathematics
Bayes' Theorem
The locus of the point of intersection of two tangents to the parabola $y^2 = 4ax$, which are at right angle to one another is
BITSAT - 2016
BITSAT
Mathematics
applications of integrals
The parabola having its focus at $(3, 2)$ and directrix along the $y$-axis has its vertex at
BITSAT - 2016
BITSAT
Mathematics
applications of integrals
At an extreme point of a function $f (x)$, the tangent to the curve is
BITSAT - 2016
BITSAT
Mathematics
limits and derivatives
The differential coefficient of
$\log_{10} x$
with respect to
$\log_{x} 10$
is
KCET - 2016
KCET
Mathematics
Logarithmic Differentiation
A wire of length
$2$
units is cut into two parts which are bent respectively to form a square of side
$= x$
units and a circle of radius
$= r$
units. If the sum of the areas of the square and the circle so formed is minimum, then :
JEE Main - 2016
JEE Main
Mathematics
Application of derivatives
Let
$p = \displaystyle\lim_{x \to 0^+ } ( 1 + \tan^2 \sqrt{x} )^{\frac{1}{2x}}$
then
$log \,p$
is equal to
JEE Main - 2016
JEE Main
Mathematics
limits and derivatives
If
$\frac{^{n+2}C_6}{^{n-2}P_2} = 11$
, then
$n$
satisfies the equation :
JEE Main - 2016
JEE Main
Mathematics
permutations and combinations
If the four letter words (need not be meaningful ) are to be formed using the letters from the word
$"MEDITERRANEAN"$
such that the first letter is
$R$
and the fourth letter is
$E$
, then the total number of all such words is :
JEE Main - 2016
JEE Main
Mathematics
permutations and combinations
Direction cosines of the line
$\frac{x+2}{2} = \frac{2y-5}{3}, z = -1$
is
MHT CET - 2016
MHT CET
Mathematics
Three Dimensional Geometry
The sum
$\displaystyle\sum^{10}_{r=1}(r^2 + 1) \times (r!)$
is equal to :
JEE Main - 2016
JEE Main
Mathematics
Sum of First n Terms of an AP
If the sum of the first ten terms of the series
$\left(1 \frac{3}{5}\right)^{2} + \left(2 \frac{2}{5}\right)^{2} + \left(3 \frac{1}{5}\right)^{2} + 4^{2} + \left(4 \frac{4}{5}\right)^{2} + .... , $
is
$\frac{16}{5} m , $
then
$m$
is equal to :
JEE Main - 2016
JEE Main
Mathematics
Sequence and series
Prev
1
...
822
823
824
825
826
...
1168
Next