Let the abscissae of the two points P and Q on a circle be the roots of x2 – 4x – 6 = 0 and the ordinates of P and Q be the roots of y2 + 2y – 7 = 0. If PQ is a diameter of the circle x2 + y2 + 2ax + 2by + c = 0, then the value of (a + b – c) is
If the standard deviation of first n natural numbers is 2, then the value of n is
The principal solutions of tan 3θ = –1 are
Let \(S=\left\{θ∈[0,2π]:8^{2sin^2θ}+8^{2cos^2θ}=16\right\}\) .Then\(n(S) + \sum_{\theta \in S}\left( \sec\left(\frac{\pi}{4} + 2\theta\right)\cosec\left(\frac{\pi}{4} + 2\theta\right)\right)\)is equal to :
If for p ≠ q ≠ 0, the function\(f(x) = \frac{{^{\sqrt[7]{p(729 + x)-3}}}}{{^{\sqrt[3]{729 + qx} - 9}}}\)is continuous at x = 0, then
LetA =\(\begin{pmatrix} 4 & -2 \\ \alpha & \beta \\ \end{pmatrix}\)If A2 + γA + 18I = 0, then det (A) is equal to ______.
If \( \alpha, \beta, \gamma \in [0, \pi] \) and if \( \alpha, \beta, \gamma \) are in AP, then \[ \frac{\sin \alpha - \sin \gamma}{\cos \gamma - \cos \alpha} \] {is equal to:}