Question:

The value of $ \frac{d}{dx}[{{x}^{n}}\,{{\log }_{a}}\,x{{e}^{x}}] $ is

Updated On: Jun 23, 2024
  • $ {{e}^{x}}\,{{\log }_{a}}\,x+\frac{{{x}^{n-1}}}{{{\log }_{e}}\,a} $
  • $ {{e}^{x}}{{x}^{n-1}}\,\left\{ x{{\log }_{a}}\,x+\frac{1}{{{\log }_{e}}\,a}+n\,{{\log }_{a}}x \right\} $
  • $ n{{x}^{n-1}}\,{{\log }_{a}}\,x{{e}^{x}} $
  • $ {{x}^{n}}\,{{\log }_{a}}x.{{e}^{x}} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

$ \frac{d}{dx}[{{x}^{n}}.{{\log }_{a}}x.{{e}^{x}}] $
$ ={{x}^{n}}.\frac{d}{dx}\{{{\log }_{a}}\,x.{{e}^{x}}\}+{{\log }_{a}}\,x.{{e}^{x}}\frac{d}{dx}({{x}^{n}}) $
$ ={{x}^{n}}\left\{ {{\log }_{a}}x.\frac{d}{dx}\,{{e}^{x}}+{{e}^{x}}\frac{d}{dx}{{\log }_{a}}x \right\} $
$ +{{e}^{x}}\,{{\log }_{a}}\,x.n{{x}^{n-1}} $
$ ={{x}^{n}}\left\{ {{e}^{x}}\,{{\log }_{a}}\,x+\frac{{{e}^{x}}}{x}.\frac{1}{{{\log }_{e}}a} \right\} $
$ +n{{x}^{n-1}}.{{e}^{x}}{{\log }_{a}}\,x $
$ ={{x}^{n-1}}\,{{e}^{x}}\left\{ x\,{{\log }_{a}}x+\frac{1}{{{\log }_{e}}\,a} \right\}+n{{x}^{n-1}}.{{e}^{x}}\,{{\log }_{a}}x $
$ ={{x}^{n-1}}\,.\,{{e}^{x}}\left\{ x\,{{\log }_{a}}x+\frac{1}{{{\log }_{e}}\,a}+n\,{{\log }_{a}}x \right\} $
Was this answer helpful?
1
0

Concepts Used:

Exponential and Logarithmic Functions

Logarithmic Functions:

The inverses of exponential functions are the logarithmic functions. The exponential function is y = ax and its inverse is x = ay. The logarithmic function y = logax is derived as the equivalent to the exponential equation x = ay. y = logax only under the following conditions: x = ay, (where, a > 0, and a≠1). In totality, it is called the logarithmic function with base a.

The domain of a logarithmic function is real numbers greater than 0, and the range is real numbers. The graph of y = logax is symmetrical to the graph of y = ax w.r.t. the line y = x. This relationship is true for any of the exponential functions and their inverse.

Exponential Functions:

Exponential functions have the formation as:

f(x)=bx

where,

b = the base

x = the exponent (or power)