The correct option is(D): skew-symmetric.
Given, \(A=\left[ \begin{matrix} 3 & -4 \\ 1 & -1 \\ \end{matrix} \right]\)
Then, \(A'=\left[ \begin{matrix} 3 & 1 \\ -4 & -1 \\ \end{matrix} \right]\)
Now, \(A-A'=\left[ \begin{matrix} 3 & -4 \\ 1 & -1 \\ \end{matrix} \right]-\left[ \begin{matrix} 3 & 1 \\ -4 & -1 \\ \end{matrix} \right]\)
\(\Rightarrow\) \(A-A'=\left[ \begin{matrix} 0 & -5 \\ 5 & 0 \\ \end{matrix} \right]\) .. (i)
Now, we have \(A'-A=\left[ \begin{matrix} 3 & 1 \\ -4 & -1 \\ \end{matrix} \right]-\left[ \begin{matrix} 3 & -4 \\ 1 & -1 \\ \end{matrix} \right]=\left[ \begin{matrix} 0 & 5 \\ -5 & 0 \\ \end{matrix} \right]\)
\(\Rightarrow\) \((A'-A)'=\left[ \begin{matrix} 0 & -5 \\ 5 & 0 \\ \end{matrix} \right]=(A-A')\)
[From E (i)] which represent that \((A-A')\) is skew-symmetric matrix.
An amount of ₹ 10,000 is put into three investments at the rate of 10%, 12% and 15% per annum. The combined annual income of all three investments is ₹ 1,310, however, the combined annual income of the first and second investments is ₹ 190 short of the income from the third. Use matrix method and find the investment amount in each at the beginning of the year.
If \[ A = \begin{bmatrix} 1 & 2 & 0 \\ -2 & -1 & -2 \\ 0 & -1 & 1 \end{bmatrix} \] then find \( A^{-1} \). Hence, solve the system of linear equations: \[ x - 2y = 10, \] \[ 2x - y - z = 8, \] \[ -2y + z = 7. \]
A matrix is a rectangular array of numbers, variables, symbols, or expressions that are defined for the operations like subtraction, addition, and multiplications. The size of a matrix is determined by the number of rows and columns in the matrix.