Question:

$ \underset{x\to 0}{\mathop{\lim }}\,\,{{\left\{ \tan \left( \frac{\pi }{4}+x \right) \right\}}^{1/x}} $ is equal to

Updated On: Jun 23, 2024
  • $ e $
  • $ {{e}^{2}} $
  • $ 1/e $
  • $ 1/{{e}^{2}} $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

$ \underset{x\to 0}{\mathop{\lim }}\,\,{{\left\{ \tan \left( \frac{\pi }{4}+x \right) \right\}}^{1/x}}=\underset{x\to 0}{\mathop{\lim }}\,\,{{\left\{ \frac{1+\tan x}{1-\tan x} \right\}}^{1/x}} $
$ =\underset{x\to 0}{\mathop{\lim }}\,\,{{\left\{ 1+\left( \frac{1+\tan x}{1-\tan x} \right) \right\}}^{1/x}} $
$ =\underset{x\to 0}{\mathop{\lim }}\,\,\,{{\left\{ 1+\frac{2\tan x}{1-\tan x} \right\}}^{1/x}} $
(Form $ {{1}^{\infty }} $ )
$ ={{e}^{\underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{2\tan \,x}{1-\tan x}.}}^{\frac{1}{x}} $
$ ={{e}^{2\underset{x\to 0}{\mathop{\lim }}\,\,\,\,\,\left( \frac{\tan x}{x} \right)\,\,.\,\,\underset{x\to 0}{\mathop{\lim }}\,\,\,\frac{1}{1-\tan x}}}\,\,\,\, $
$ ={{e}^{2.1.\left( \frac{1}{1-0} \right)}}={{e}^{2}} $
Was this answer helpful?
0
0

Concepts Used:

Limits And Derivatives

Mathematically, a limit is explained as a value that a function approaches as the input, and it produces some value. Limits are essential in calculus and mathematical analysis and are used to define derivatives, integrals, and continuity.

Limit of a Function

Limits Formula:

Limits Formula
 Derivatives of a Function:

derivative is referred to the instantaneous rate of change of a quantity with response to the other. It helps to look into the moment-by-moment nature of an amount. The derivative of a function is shown in the below-given formula.

 Derivatives of a Function

Properties of Derivatives:

Properties of Derivatives

Read More: Limits and Derivatives