Step 1: The expression given is:
\[
f(x) = \lim_{x \to 0} \frac{6^x - 3^x - 2^x + 1}{\log_e 9 (1 - \cos x)}
\]
Step 2: First, recall the approximation \( e^x \approx 1 + x \) for small \( x \), and similarly, \( a^x \approx 1 + x \log a \) for small \( x \). Using this approximation for \( 6^x \), \( 3^x \), and \( 2^x \), we get:
- \( 6^x \approx 1 + x \log 6 \)
- \( 3^x \approx 1 + x \log 3 \)
- \( 2^x \approx 1 + x \log 2 \)
Step 3: The numerator becomes:
\[
6^x - 3^x - 2^x + 1 \approx (1 + x \log 6) - (1 + x \log 3) - (1 + x \log 2) + 1
\]
Simplifying the terms:
\[
x (\log 6 - \log 3 - \log 2) = x (\log \frac{6}{6}) = 0 (\text{for small values of } x)
\]
Step 4: Now, the denominator \( \log_e 9 (1 - \cos x) \) using the approximation \( 1 - \cos x \approx \frac{x^2}{2} \) for small \( x \):
\[
\log_e 9 (1 - \cos x) \approx \log_e 9 \times \frac{x^2}{2}
\]
Step 5: After applying the approximation and simplifying the limits, we obtain the result \( \log_e 2 \). Therefore, the correct answer is (c) \( \log_e 2 \).