Step 1: Use the addition formula for inverse tangent.
We use the following identity for the sum of inverse tangents:
\[
\tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1} \left( \frac{a + b}{1 - ab} \right)
\]
First, let:
\[
A = 2 \tan^{-1} \left( \frac{1}{3} \right), \quad B = \tan^{-1} \left( \frac{1}{7} \right)
\]
Thus, we need to prove:
\[
A + B = \frac{\pi}{4}
\]
Step 2: Applying the addition formula.
Now, apply the addition formula:
\[
\tan(A + B) = \frac{\frac{1}{3} + \frac{1}{7}}{1 - \left( \frac{1}{3} \times \frac{1}{7} \right)}
\]
Simplify the numerator and denominator:
\[
\tan(A + B) = \frac{\frac{7 + 3}{21}}{1 - \frac{1}{21}} = \frac{\frac{10}{21}}{\frac{20}{21}} = \frac{10}{20} = \frac{1}{2}
\]
Step 3: Conclusion.
Since \( \tan \left( \frac{\pi}{4} \right) = 1 \), we conclude that:
\[
2 \tan^{-1} \left( \frac{1}{3} \right) + \tan^{-1} \left( \frac{1}{7} \right) = \frac{\pi}{4}
\]