If 
then the value of \( m \) is:
Step 1: Continuity Condition.
For the function to be continuous at \( x = 0 \), we must have: \[ \lim_{x \to 0} f(x) = f(0) \] Thus, we need to calculate \( \lim_{x \to 0} \frac{\sin 8x}{5x} \).
Step 2: Finding the limit.
Using the standard limit \( \lim_{x \to 0} \frac{\sin kx}{x} = k \), we get: \[ \lim_{x \to 0} \frac{\sin 8x}{5x} = \frac{8}{5} \] Step 3: Conclusion.
For the function to be continuous, we must have: \[ f(0) = m + 1 = \frac{8}{5} \] Thus, solving for \( m \), we get: \[ m + 1 = \frac{8}{5} \quad \Rightarrow \quad m = \frac{8}{5} - 1 = \frac{5}{8} \] Step 4: Final Answer.
Therefore, the value of \( m \) is \( \frac{5}{8} \), corresponding to option (A).
Let the function $ f(x) $ be defined as follows: $$ f(x) = \begin{cases} (1 + | \sin x |)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6}<x<0 \\b, & x = 0 \\ \frac{\tan 2x}{\tan 3x}, & 0<x<\frac{\pi}{6} \end{cases} $$ Then the values of $ a $ and $ b $ are:
| LIST I | LIST II | ||
| A. | \(\lim\limits_{x\rightarrow0}(1+sinx)^{2\cot x}\) | I. | e-1/6 |
| B. | \(\lim\limits_{x\rightarrow0}e^x-(1+x)/x^2\) | II. | e |
| C. | \(\lim\limits_{x\rightarrow0}(\frac{sinx}{x})^{1/x^2}\) | III. | e2 |
| D. | \(\lim\limits_{x\rightarrow\infty}(\frac{x+2}{x+1})^{x+3}\) | IV. | ½ |