Step 1: Understanding the Concept
The problem requires finding the derivative of a function involving a logarithm with a variable base and then evaluating it at a specific point. The first step is to simplify the function using logarithm properties, particularly the change of base formula.
Step 2: Key Formula or Approach
1. Use the change of base formula for logarithms: $\log_b a = \frac{\ln a}{\ln b}$. 2. Simplify the resulting expression using properties of logarithms like $\ln(ab) = \ln a + \ln b$ and $\ln(a^n) = n\ln a$. 3. Differentiate the simplified function using the quotient rule: $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$. 4. Substitute $x=3$ into the derivative to find the final value.
Step 3: Detailed Explanation
1. Simplify the function $f(x)$: The function is $f(x) = \log_{(x-1)^2}(x^2-3x+2)$. First, factor the argument of the logarithm: $x^2-3x+2 = (x-1)(x-2)$. \[ f(x) = \log_{(x-1)^2}((x-1)(x-2)) \] Apply the change of base formula to natural logarithm (ln): \[ f(x) = \frac{\ln((x-1)(x-2))}{\ln((x-1)^2)} \] Using logarithm properties: \[ f(x) = \frac{\ln(x-1) + \ln(x-2)}{2\ln(x-1)} \] (The domain $x \in \mathbb{R}-[1,2]$ ensures that the arguments of the logarithms are well-defined and positive for $x>2$). Split the fraction: \[ f(x) = \frac{\ln(x-1)}{2\ln(x-1)} + \frac{\ln(x-2)}{2\ln(x-1)} = \frac{1}{2} + \frac{1}{2}\frac{\ln(x-2)}{\ln(x-1)} \]
2. Differentiate $f(x)$: \[ f'(x) = \frac{d}{dx}\left(\frac{1}{2} + \frac{1}{2}\frac{\ln(x-2)}{\ln(x-1)}\right) = 0 + \frac{1}{2} \frac{d}{dx}\left(\frac{\ln(x-2)}{\ln(x-1)}\right) \] Using the quotient rule for the fraction: \[ f'(x) = \frac{1}{2} \left[ \frac{\frac{d}{dx}(\ln(x-2)) \cdot \ln(x-1) - \ln(x-2) \cdot \frac{d}{dx}(\ln(x-1))}{(\ln(x-1))^2} \right] \] \[ f'(x) = \frac{1}{2} \left[ \frac{\frac{1}{x-2} \cdot \ln(x-1) - \ln(x-2) \cdot \frac{1}{x-1}}{(\ln(x-1))^2} \right] \]
3. Evaluate $f'(3)$: Substitute $x=3$ into the expression for $f'(x)$: \[ f'(3) = \frac{1}{2} \left[ \frac{\frac{1}{3-2} \cdot \ln(3-1) - \ln(3-2) \cdot \frac{1}{3-1}}{(\ln(3-1))^2} \right] \] \[ f'(3) = \frac{1}{2} \left[ \frac{1 \cdot \ln(2) - \ln(1) \cdot \frac{1}{2}}{(\ln 2)^2} \right] \] Since $\ln(1)=0$: \[ f'(3) = \frac{1}{2} \left[ \frac{\ln 2 - 0}{(\ln 2)^2} \right] = \frac{1}{2} \left[ \frac{\ln 2}{(\ln 2)^2} \right] = \frac{1}{2\ln 2} \]
4. Match with options: The result is $\frac{1}{2\ln 2}$. We can rewrite this using logarithm properties: \[ \frac{1}{2\ln 2} = \frac{1}{\ln(2^2)} = \frac{1}{\ln 4} \] Using the change of base formula again, $\frac{1}{\ln a} = \log_a e$. \[ \frac{1}{\ln 4} = \log_4 e \]
Step 4: Final Answer
The value of the derivative at $x=3$ is $\log_4 e$.
Observe the following data given in the table. (\(K_H\) = Henry's law constant)
Gas | CO₂ | Ar | HCHO | CH₄ |
---|---|---|---|---|
\(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
For a first order decomposition of a certain reaction, rate constant is given by the equation
\(\log k(s⁻¹) = 7.14 - \frac{1 \times 10^4 K}{T}\). The activation energy of the reaction (in kJ mol⁻¹) is (\(R = 8.3 J K⁻¹ mol⁻¹\))
Note: The provided value for R is 8.3. We will use the more precise value R=8.314 J K⁻¹ mol⁻¹ for accuracy, as is standard.