Step 1: Understanding the Concept
This problem involves the properties of normals to a parabola. A standard result states that if the normals at two points with parameters $t_1$ and $t_2$ on a parabola meet on the parabola again at a third point with parameter $t_3$, then $t_3 = -(t_1+t_2)$. Also, this condition holds if $t_1t_2=2$.
Step 2: Key Formula or Approach
1. Identify the parameter $a$ for the parabola $y^2=3x$.
2. Find the parameters $t_P$ and $t_Q$ corresponding to the points P and Q using the parametric form of the parabola $(at^2, 2at)$.
3. Use the property $t_R = -(t_P+t_Q)$ to find the parameter for the point R.
4. Use the parameter $t_R$ to find the coordinates of R.
Step 3: Detailed Explanation
1. Identify parabola parameter:
The equation of the parabola is $y^2=3x$. Comparing this with the standard form $y^2=4ax$, we have $4a=3$, which gives $a = \frac{3}{4}$.
2. Find parameters for P and Q:
The parametric coordinates of a point on this parabola are $(at^2, 2at) = \left(\frac{3}{4}t^2, \frac{3}{2}t\right)$.
For point $P\left(\frac{3}{4}, \frac{3}{2}\right)$:
The y-coordinate is $2at_P = \frac{3}{2}t_P = \frac{3}{2} \implies t_P = 1$.
Let's check the x-coordinate: $at_P^2 = \frac{3}{4}(1)^2 = \frac{3}{4}$. This matches. So, $t_P = 1$.
For point $Q(3,3)$:
The y-coordinate is $2at_Q = \frac{3}{2}t_Q = 3 \implies t_Q = 2$.
Let's check the x-coordinate: $at_Q^2 = \frac{3}{4}(2)^2 = \frac{3}{4}(4) = 3$. This matches. So, $t_Q = 2$.
3. Find the parameter for R:
The parameter of the point of intersection R, $t_R$, is given by the relation:
\[ t_R = -(t_P + t_Q) \]
\[ t_R = -(1 + 2) = -3 \]
4. Find the coordinates of R:
Now we find the coordinates of R using its parameter $t_R = -3$.
x-coordinate of R: $x_R = at_R^2 = \frac{3}{4}(-3)^2 = \frac{3}{4}(9) = \frac{27}{4}$.
y-coordinate of R: $y_R = 2at_R = \frac{3}{2}(-3) = -\frac{9}{2}$.
So the coordinates of R are $\left(\frac{27}{4}, -\frac{9}{2}\right)$.
Note on the options: The calculated y-coordinate is $-\frac{9}{2}$. Option (B) has the correct x-coordinate and the correct magnitude for the y-coordinate, but with a positive sign. This is a common type of error in exam questions or answer keys. Based on the derived result, the correct point is $\left(\frac{27}{4}, -\frac{9}{2}\right)$, and we select the closest option.
Step 4: Final Answer
The coordinates of R are calculated to be $\left(\frac{27}{4}, -\frac{9}{2}\right)$. Option (B) is $\left(\frac{27}{4}, \frac{9}{2}\right)$, which has the same components but a different sign for the y-coordinate. Assuming a typo in the option, (B) is the intended answer.