Consider the following frequency distribution table. \[ \begin{array}{|c|c|} \hline \textbf{Class Interval} & \textbf{Frequency} \\ \hline 10-20 & 180 \\ \hline 20-30 & f_1 \\ \hline 30-40 & 34 \\ \hline 40-50 & 180 \\ \hline 50-60 & 136 \\ \hline 60-70 & 50 \\ \hline 70-80 & f_2 \\ \hline \end{array} \] If the total frequency is 685 and the median is 42.6, then the values of \( f_1 \) and \( f_2 \) are
If \( f(x) = \lim_{x \to 0} \frac{6^x - 3^x - 2^x + 1}{\log_e 9 (1 - \cos x)} \) \(\text{ is a real number, then }\) \( \lim_{x \to 0} f(x) = \)
Let \( \mathbf{A} = 2\hat{i} + \hat{j} - 2\hat{k} \) and \( \mathbf{B} = \hat{i} + \hat{j} \). If \( \mathbf{C} \) is a vector such that \( |\mathbf{C} - \mathbf{A}| = 3 \) and the angle between \( \mathbf{A} \times \mathbf{B} \) and \( \mathbf{C} \) is \( 30^\circ \), then \( [(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}] = 3 \), the value of \( \mathbf{A} \cdot \mathbf{C} \) is equal to:
Let A and B be sets. \[A \cap X = B \cap X = \varnothing \quad \text{and} \quad A \cup X = B \cup X \quad \text{for some set } X,\ \text{find the relation between } A \text{ and } B.\]
If \[ \mathbf{a} = \hat{i} - \hat{k}, \mathbf{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}, \mathbf{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k}, \] \(\text{then }\) [\(\mathbf{a}\) \(\mathbf{b}\) \(\mathbf{c}\)] \(\text{ depends on:}\)
If the equation \[ |x^2 - 6x + 8| = a \] \(\text{has four real solutions, then find the value of \( a \):}\)
If A and B are square matrices such that \( B = -A^{-1}BA \), \(\text{ then }\) \( (A + B)^2 \) is