Step 1: Using the Trigonometric Identity:
We use the identity for \( \cos^2 x \) to simplify the integral:
\[
\cos^2 x = \frac{1 + \cos(2x)}{2}
\]
Thus, the integral becomes:
\[
\int \cos^2 x \, dx = \int \frac{1 + \cos(2x)}{2} \, dx
\]
Step 2: Splitting the Integral:
Now we split the integral into two parts:
\[
= \frac{1}{2} \int 1 \, dx + \frac{1}{2} \int \cos(2x) \, dx
\]
Step 3: Solving the Integrals:
The first integral is straightforward:
\[
\int 1 \, dx = x
\]
For the second integral:
\[
\int \cos(2x) \, dx = \frac{1}{2} \sin(2x)
\]
Step 4: Final Solution:
Putting it all together:
\[
\int \cos^2 x \, dx = \frac{x}{2} + \frac{1}{4} \sin(2x) + c
\]
Step 5: Conclusion:
Thus, the correct answer is \( \frac{x}{2} + \frac{1}{4} \sin(2x) + c \).