>
KEAM
List of top Questions asked in KEAM
If the initial speed of the car moving at constant acceleration is halved, then the stopping distance \( S \) becomes:
KEAM - 2024
KEAM
Physics
Acceleration due to gravity of the earth
The angle between \( \vec{A} \times \vec{B} \) and \( \vec{B} \times \vec{A} \) is:
KEAM - 2024
KEAM
Physics
The Potential Energy Of A Spring
If the time period \( T \) of a satellite revolving close to the earth is given as \( T = 2\pi R^a g^b \), then the value of \( a \) and \( b \) are respectively (where \( R \) is the radius of the earth):
KEAM - 2024
KEAM
Physics
Acceleration due to gravity of the earth
If \( f(x) = \frac{|x|}{1 + |x|}, \, x \in \mathbb{R} \), then \( f'(-2) \) is equal to:
KEAM - 2024
KEAM
Mathematics
introduction to three dimensional geometry
Variance of 6, 7, 8, 9 is
KEAM - 2024
KEAM
Mathematics
Slope of a line
The solution of the inequality \( |3x - 4| \leq 5 \) is
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
If \( z \) is a complex number of unit modulus, then
\[ \left| \frac{1+z}{1+ \overline{z}} \right| \]
equals:
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
If \( x \neq 0, y \neq 0 \), then the value of
\[ \cot^{-1}\left(\frac{x}{y}\right) + \cot^{-1}\left(\frac{y}{x}\right) \]
is:
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
The expression
\[ \frac{1 + \cos\left(\frac{\pi}{5}\right) + i \sin\left(\frac{\pi}{5}\right)}{1 + \cos\left(\frac{\pi}{5}\right) - i \sin\left(\frac{\pi}{5}\right)} \]
is equal to:
KEAM - 2024
KEAM
Mathematics
introduction to three dimensional geometry
Let A and B be two events such that \( P(A) = 0.4 \), \( P(B) = 0.5 \) and \( P(A \cap B) = 0.1 \). Then
\[ P(A \mid B) = ? \]
KEAM - 2024
KEAM
Mathematics
Sequence and Series
Three dice are thrown simultaneously. The probability that all the three outcomes are the same number, is:
KEAM - 2024
KEAM
Mathematics
introduction to three dimensional geometry
If \( \overrightarrow{a} = \alpha \hat{i} + \beta \hat{j} \) and \( \overrightarrow{b} = \alpha \hat{i} - \beta \hat{j} \) are perpendicular, where \( \alpha \neq \beta \), then \( \alpha + \beta \) is equal to:
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
The symmetric form of the equation of the straight line
\[ \overrightarrow{r} = \hat{i} + t \hat{j}, \quad t \in \mathbb{R}, \]
is:
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
If \( \overrightarrow{a} \) and \( \overrightarrow{b} \) are two nonzero vectors and if \( |\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a} \cdot \overrightarrow{b}| \), then the angle between \( \overrightarrow{a} \) and \( \overrightarrow{b} \) is equal to
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
If \( \overrightarrow{a} \) and \( \overrightarrow{b} \) are two unit vectors and if \( \frac{\pi}{4} \) is the angle between \( \overrightarrow{a} \) and \( \overrightarrow{b} \), then
\[ (\overrightarrow{a} + (\overrightarrow{a} \cdot \overrightarrow{b})\overrightarrow{b}) \cdot (\overrightarrow{a} - (\overrightarrow{a} \cdot \overrightarrow{b})\overrightarrow{b}) \]
is:
KEAM - 2024
KEAM
Mathematics
solution of system of linear inequalities in two variables
The shortest distance between the parallel straight lines
\[ \overrightarrow{r_1} = \hat{k} + s(\hat{i} + \hat{j}), \quad t, s \in \mathbb{R} \quad {and} \quad \overrightarrow{r_2} = \hat{j} + t(\hat{i} + \hat{j}), \]
is:
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
The angle between the two straight lines
\[ \overrightarrow{r_1} = (4i - k) + t(2i + j - 2k), \quad t \in \mathbb{R}, \quad {and} \quad \overrightarrow{r_2} = (i - j + 2k) + s(2i - 2j + k), \quad s \in \mathbb{R} \]
is:
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
The common point of the two straight lines
\[ \overrightarrow{r_1} = (i - 2j + 3k) + s(2i + j + k) \quad {and} \quad \overrightarrow{r_2} = (-i + 2j + 7k) + t(i + j + k), \quad t, s \in \mathbb{R} \]
is:
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
If \( \alpha, \beta, \gamma \) are the angles made by
\[ \frac{x-1}{3} = \frac{y+1}{2} = -\frac{z}{1} \text{ with the coordinate axes, then } \] \((\cos\alpha, \cos\beta, \cos\gamma) = \)
KEAM - 2024
KEAM
Mathematics
Multiplication of a Vector by a Scalar
Let
\( \overrightarrow{a} = 2i + 3j - 4k, \quad \overrightarrow{b} = i + j - k, \quad \overrightarrow{c} = -i + 2j + 3k, \quad \overrightarrow{d} = i + j + k. \) Then \[ (\overrightarrow{a} \times \overrightarrow{b}) \cdot (\overrightarrow{c} \times \overrightarrow{d}) = \]
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
The volume of the parallelepiped whose coterminous vectors are given by the vectors
\[ \overrightarrow{a} = i - j + k, \quad \overrightarrow{b} = 3i + j - k, \quad \overrightarrow{c} = 5i + 2j - 7k \]
is (in cubic units):
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
The length of the latus rectum of the parabola
\( y^2 = x \)
is:
KEAM - 2024
KEAM
Mathematics
Parabola
The centre of the circle \( (x-3)(x+1)+(y-1)(y+3)=0 \) is:
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
Let
\( \overrightarrow{AB} = i + 2j - 2k \)
and
\( \overrightarrow{AC} = i - j + k. \)
Then the area of
\( \triangle ABC \)
is:
KEAM - 2024
KEAM
Mathematics
Sequence and Series
Let \( \vec{a} \) and \( \vec{b} \) be two unit vectors. Let \( \theta \) be the angle between \( \vec{a} \) and \( \vec{b} \). If \( \theta \neq 0 \) or \( \pi \), then
\[ \left| \vec{a} - (\vec{a} \cdot \vec{b}) \vec{b} \right|^2 \]
is equal to:
KEAM - 2024
KEAM
Mathematics
Magnitude and Directions of a Vector
Prev
1
...
5
6
7
8
9
...
122
Next