The change in pressure is related to the molar mass of the solute using **Raoult's Law**, which states that the relative lowering of vapor pressure is proportional to the mole fraction of the solute:
\[
\frac{\Delta P}{P_{\text{initial}}} = \frac{n_{\text{solute}}}{n_{\text{solvent}}}
\]
Where:
- \( \Delta P \) is the change in vapor pressure,
- \( P_{\text{initial}} \) is the initial vapor pressure,
- \( n_{\text{solute}} \) and \( n_{\text{solvent}} \) are the moles of solute and solvent.
### Step 1: Calculate the Change in Vapor Pressure
The initial pressure of pure benzene is 0.75, and the final pressure is 0.745. The change in pressure \( \Delta P \) is:
\[
\Delta P = P_{\text{initial}} - P_{\text{final}} = 0.75 - 0.745 = 0.005
\]
### Step 2: Apply Raoult's Law
The number of moles of solvent \( n_{\text{solvent}} \) (benzene) is:
\[
n_{\text{solvent}} = \frac{m_{\text{solvent}}}{M_{\text{solvent}}} = \frac{39 \, \text{g}}{78 \, \text{g/mol}} = 0.5 \, \text{mol}
\]
The mole fraction of the solute is:
\[
\frac{n_{\text{solute}}}{n_{\text{solvent}}} = \frac{\Delta P}{P_{\text{initial}}} = \frac{0.005}{0.75} = 0.00667
\]
Thus:
\[
n_{\text{solute}} = 0.00667 \times 0.5 = 0.00333 \, \text{mol}
\]
### Step 3: Calculate the Molar Mass of the Solute
The molar mass of the solute is:
\[
M_{\text{solute}} = \frac{m_{\text{solute}}}{n_{\text{solute}}} = \frac{0.2 \, \text{g}}{0.00333 \, \text{mol}} = 60 \, \text{g/mol}
\]
Thus, the molar mass of the solute is:
\[
\boxed{(C) \, 60 \, \text{g/mol}}
\]