>
Exams
>
Mathematics
>
integral
>
evaluate the integral int frac log 1 x 1 x dx
Question:
Evaluate the integral:
\[ \int \frac{\log(1+x)}{1+x} \, dx \]
Show Hint
When you encounter integrals involving logarithmic functions, try substitution to simplify the integrand.
KEAM - 2025
KEAM
Updated On:
Apr 28, 2025
Hide Solution
Verified By Collegedunia
Solution and Explanation
We can use substitution to solve this integral. Let: \[ u = \log(1+x), \quad du = \frac{1}{1+x} \, dx \] This transforms the integral into: \[ \int u \, du = \frac{1}{2} u^2 + C \] Substituting back for \(u\): \[ \frac{1}{2} \log^2(1+x) + C \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on integral
Evaluate the following integral:
\[ \int e^x \left[\frac{1}{1+x(1+x)^2}\right] dx \]
KEAM - 2025
Mathematics
integral
View Solution
Find the integral:
\[ \int \left( \sin^{-1} \sqrt{x} + \cos^{-1} \sqrt{x} \right) \, dx \]
KEAM - 2025
Mathematics
integral
View Solution
Evaluate the integral:
\[ \int \frac{\cos \theta}{2 - \sin^2 \theta} \, d\theta \]
KEAM - 2025
Mathematics
integral
View Solution
Evaluate the integral:
\[ \int \frac{\sin(2x)}{\sin(x)} \, dx \]
KEAM - 2025
Mathematics
integral
View Solution
Evaluate the integral:
\[ \int_{-3}^{3} \left\lfloor x \right\rfloor \, dx \]
KEAM - 2025
Mathematics
integral
View Solution
View More Questions
Questions Asked in KEAM exam
Given that \( \vec{a} \parallel \vec{b} \), \( \vec{a} \cdot \vec{b} = \frac{49}{2} \), and \( |\vec{a}| = 7 \), find \( |\vec{b}| \).
KEAM - 2025
Vector Algebra
View Solution
The acceleration of a particle varies with time as
\( a = 6t \).
What is the displacement and velocity of the particle at
\( t = 4s \)?
KEAM - 2025
Acceleration
View Solution
Water flows through a pipe with velocity \( V_1 = 3 \, \text{m/s} \) where the area of the pipe is \( A_1 \). What is the velocity \( V_2 \), where the diameter of the pipe is half of that at area \( A_1 \)?
KEAM - 2025
mechanical properties of fluid
View Solution
Evaluate the integral:
\[ \int \frac{2x^2 + 4x + 3}{x^2 + x + 1} \, dx \]
KEAM - 2025
Integration
View Solution
\( E^\circ_{\text{Cell}} = 1.1 \, \text{V}. \, \text{Find} \, E_{\text{Cell}} \, \text{for the reaction:} \, \text{Zn} + \text{Cu}^{2+} \, (0.1M) \rightleftharpoons \text{Zn}^{2+} \, (0.001M) + \text{Cu} \)
KEAM - 2025
Galvanic Cells
View Solution
View More Questions