>
Exams
>
Mathematics
>
integral
>
evaluate the integral int frac log 1 x 1 x dx
Question:
Evaluate the integral:
\[ \int \frac{\log(1+x)}{1+x} \, dx \]
Show Hint
When you encounter integrals involving logarithmic functions, try substitution to simplify the integrand.
KEAM - 2025
KEAM
Updated On:
Apr 28, 2025
Hide Solution
Verified By Collegedunia
Solution and Explanation
We can use substitution to solve this integral. Let: \[ u = \log(1+x), \quad du = \frac{1}{1+x} \, dx \] This transforms the integral into: \[ \int u \, du = \frac{1}{2} u^2 + C \] Substituting back for \(u\): \[ \frac{1}{2} \log^2(1+x) + C \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on integral
Evaluate the integral:
\[ \int \frac{\sin(2x)}{\sin(x)} \, dx \]
KEAM - 2025
Mathematics
integral
View Solution
Find the value of the integral: \[ \int_0^\pi \sin^2(x) \, dx. \]
BITSAT - 2025
Mathematics
integral
View Solution
Evaluate the integral:
$$ \int_0^{\pi/4} \frac{\ln(1 + \tan x)}{\cos x \sin x} \, dx $$
BITSAT - 2025
Mathematics
integral
View Solution
Evaluate the integral
\( \int_0^1 \frac{\ln(1 + x)}{1 + x^2} \, dx \)
BITSAT - 2025
Mathematics
integral
View Solution
Let $ f(x) $ be a positive function and $I_1 = \int_{-\frac{1}{2}}^1 2x \, f\left(2x(1-2x)\right) dx$ and $I_2 = \int_{-1}^2 f\left(x(1-x)\right) dx.$ Then the value of $\frac{I_2}{I_1}$ is equal to ____
JEE Main - 2025
Mathematics
integral
View Solution
View More Questions
Questions Asked in KEAM exam
Given that \( \vec{a} \parallel \vec{b} \), \( \vec{a} \cdot \vec{b} = \frac{49}{2} \), and \( |\vec{a}| = 7 \), find \( |\vec{b}| \).
KEAM - 2025
Vector Algebra
View Solution
If \( A \) is a \( 3 \times 3 \) matrix and \( |B| = 3|A| \) and \( |A| = 5 \), then find \( \left| \frac{\text{adj} B}{|A|} \right| \).
KEAM - 2025
Matrix Operations
View Solution
If $ \cos^{-1}(x) - \sin^{-1}(x) = \frac{\pi}{6} $, then find } $ x $.
KEAM - 2025
Trigonometric Equations
View Solution
Solve for \( a \) and \( b \) given the equations:
\[ \sin x + \sin y = a, \quad \cos x + \cos y = b, \quad x + y = \frac{2\pi}{3} \]
KEAM - 2025
Trigonometry
View Solution
The element that has the highest melting point in the 3d series is:
KEAM - 2025
d -and f -Block Elements
View Solution
View More Questions